next up previous
Next: Retrieval of Aerosol Profiles Up: Model Description Previous: Refraction

Comparisons with Other Models

The polarized radiative transfer model described in this chapter has been compared against a number of other models. A summary of the results is given in Table 4.4. All comparisons are made for plane-parallel, homogeneous atmospheres consisting entirely of either Rayleigh or Mie scatterers. Both the total optical depth and single-scattering albedo are prescribed. For Mie atmospheres the effective radius, $r_{\rm eff}$, and the effective variance, $v_{\rm eff}$, are given for the standard-Gamma size distribution. All surfaces are Lambertian of albedo $\Lambda$ and depolarizing. Full references are given in the bibliography and D&A refers to the doubling and adding solution method. For the orders of scattering convergence, q=4 was used. The overall agreement was found to be quite good with maximum errors of less than 0.5% for a simulation of the thick Venusian atmosphere and less than 0.1% for optical depths of unity. In general, the Mie atmospheres seem to have slightly better agreement than the Rayleigh. This is believed to be a result of the fact that in the Mie atmospheres the energy is distributed over a greater number of Fourier harmonic frequencies. As a result, the Rayleigh m=0 term does not converge as fast as the Mie m=0 term.


 
Table 4.4: Comparison of model results with various sources of tabulated model output (D&A=doubling and adding).
 
No. Ref. Solution Atmosphere and Comparison Percent  
    Method Geometry   Difference  
1 1 D&A Rayleigh Reflected avg=0.04  
      $\tau$=1, $\tilde{\omega}$=1.0 I,Q,U max=0.08  
      $\Lambda$=0.25, $\mu_o$=0.8      
      $\phi-\phi_o$=90o      
2 1 D&A Mie ( $r_{\rm eff}$=0.2 $\mu $m, Reflected avg=0.03  
      $v_{\rm eff}$=0.07) I,Q,U,V max=0.06  
      $\tau$=1, $\tilde{\omega}$=0.99 expansion    
      $\Lambda$=0.1, $\mu_o$=0.2 coefficients    
3 2/3 Spherical Mie ( $r_{\rm eff}$=0.2 $\mu $m, Internal avg=0.03  
    Harmonics $v_{\rm eff}$=0.07) I,Q,U,V max=0.07  
      $\tau$=1, $\tilde{\omega}$=0.99      
      $\Lambda$=0.1, $\mu_o$=0.2,      
      $\phi-\phi_o$=0, 90, 180o      
4 4 D&A Rayleigh Internal avg=0.1  
      $\tau$=10, $\tilde{\omega}$=1.0 I max=0.4  
      $\Lambda$=0.1, $\mu_o$=0.6,      
      $\phi-\phi_o$=0, 90, 180o      
5 4a D&A Mie ( $r_{\rm eff}$=1.05 $\mu $m, Internal avg=0.08  
      $v_{\rm eff}$=0.07) I max=0.35  
      $\tau$=10, $\tilde{\omega}$=1.0      
      $\Lambda$=0.1, $\mu_o$=0.6,      
      $\phi-\phi_o$=0, 90, 180o      
6 5/6 Matrix Rayleigh and plots of I, identical  
    Operator Mie (haze-H) polarization (to within  
        and neutral width of  
        points lines)  
a Simulates Venusian atmosphere
1: Evans and Stephens (1991)
2: Garcia and Siewert (1986)
3: Garcia and Siewert (1989)
4: Stamnes et al. (1989)
5: Kattawar et al. (1976)
6: Hitzfelder et al. (1976)


Table 4.5 shows some numbers used in comparison 2 (cf. Table 4.4). The first three (of eight) expansion I, Q, U, and V coefficients are compared at four zenith angles. A number are identical to three significant figures and off by one or two in the fourth significant digit. This amounts to an average difference of about 0.03%. Also, the fractional difference does not increase for the smaller magnitude numbers as is evident by comparing V.


 
Table 4.5: Summary of comparison 2 as described in Table 4.4.
 
  Evans and Stephens (1991) this model
$\mu $ m=0 m=1 m=2 m=0 m=1 m=2
  Reflected $I^{cm}(0;\mu)$
0.09501 3.16625(-1)a 2.99206(-1) 1.41050(-1) 3.1657(-1) 2.9928(-1) 1.4109(-1)
0.45802 1.52211(-1) 1.02308(-1) 4.46799(-2) 1.5216(-1) 1.0235(-1) 4.4693(-2)
0.75540 8.76554(-2) 3.83168(-2) 1.38881(-2) 8.7614(-1) 3.8336(-2) 1.3894(-2)
0.98940 5.58402(-2) 4.81263(-3) 4.54656(-4) 5.5810(-2) 4.8162(-3) 4.5469(-4)
  Reflected $Q^{cm}(0;\mu)$
0.09501 6.35745(-2) 1.35402(-2) -4.85223(-2) 6.3537(-2) 1.3539(-2) -4.8515(-2)
0.45802 2.52572(-2) -7.97154(-3) -3.09958(-2) 2.5234(-2) -7.9729(-3) -3.1005(-2)
0.75540 8.27355(-3) -1.10523(-2) -2.54604(-2) 8.2636(-3) -1.0948(-2) -2.5469(-2)
0.98940 2.76513(-4) -2.87733(-3) -2.17265(-2) 2.7611(-4) -2.8777(-3) -2.1735(-2)
  Reflected $U^{sm}(0;\mu)$
0.09501   4.65680(-2) 2.96372(-2)   4.6567(-2) 2.9648(-2)
0.45802   2.83557(-2) 2.87641(-2)   2.8357(-2) 2.8774(-2)
0.75540   1.59988(-2) 2.53115(-2)   1.6000(-2) 2.5320(-2)
0.98940   2.91467(-2) 2.17265(-2)   2.9150(-2) 2.1735(-2)
  Reflected $V^{sm}(0;\mu)$
0.09501   -6.77792(-5) 4.81852(-5)   -6.7764(-5) 4.8163(-5)
0.45802   2.13234(-5) -1.14599(-4)   2.1317(-5) -1.1451(-4)
0.75540   6.18229(-5) -7.27901(-5)   6.1794(-5) -7.2747(-5)
0.98940   2.04401(-5) -3.61377(-6)   2.0433(-5) -3.6123(-6)
a Read 3.16625(-1) as 3.16625 $\times 10^{-1}$.


In addition to the comparisons carried out against published model results, tests of the spherical corrections were done through a comparison against a single-scattering model. This model, developed at the Meteorological Institute of Stockholm University (MISU) and it uses the same spherical shell geometry to calculate unpolarized, single-scattered radiances. Using the same atmosphere and cross-sections, calculated internal radiances were nearly identical to that of the MISU code.


next up previous
Next: Retrieval of Aerosol Profiles Up: Model Description Previous: Refraction
Chris McLinden
1999-07-22