Lecture 9: Tropical Storms and Hurricanes

- ☐ Hurricane Characteristics
- ☐ Hurricane Formation, Movement and Dissipation
- ☐ Hurricane Destruction and Warming

Naming Convention

- ☐ *Hurricanes:* extreme tropical storms over Atlantic and eastern Pacific Oceans.
- ☐ *Typhoons:* extreme tropical storms over western Pacific Ocean.
- Cyclones: extreme tropical storms over Indian Ocean and Australia.

 ESS5
 Prof. Jin-Yi Yu

Ocean Temperature And Hurricane

☐ Hurricanes depend on a large pool of warm water.

Annual Hurricane Frequency

Table 12–1 Maximum, Minimum, and Average Number of Hurricanes (and Their Counterparts) per Year over Various Parts of the World's Oceans, 1968 to 1989 (1968 to 1990 for the Southern Hemisphere)

Basin	Maximum	Minimum	Average	
Atlantic	12	2	5.4	
Eastern Pacific	14	4	8.9	
Western Pacific	24	11	16.0	
Northern Indian Ocean	6	0	2.5	
Southwestern Indian Ocean	10	0	4.4	
Southeastern Indian Ocean/Australia	7	0	3.4	
Australia/Southwestern Pacific	11	2	4.3	
Global	65	34	44.9	

Prof. Jin-Yi Yu

Source: Colorado State University

☐ No hurricane in the Southern Atlantic Ocean.

☐ Western Pacific hurricanes are the strongest.

Hurricane Characteristics

■ Definition: Hurricanes have sustained winds of 120 km/hr (74 mph) or greater. □ Size: Average diameters are approximately 600 km (350 mi). (one third the size of mid-latitude cyclone) □ Duration: days to a week or more. ☐ Strength: Central pressure averages about 950 mb but may be as low as 870 mb. □ Power: The energy released by a single hurricane can exceed the annual electricity consumption of the US and Canada.

rof. Jin-Yi Yu

Hurricane Seasons

- ☐ Hurricanes obtain their energy from latent heat release in the cloud formation process.
- ☐ Hurricanes occur where a deep layer of warm waters exists and during the times of highest SSTs.
- □ For the N.H., August and September are the most active months.
- □ For the S.H., the hurricane season is January-March.

Hurricane Structure

- ☐ A *central eye* surrounded by large cumulonimbus thunderstorms occupying the adjacent *eye wall*.
- Weak uplift and low precipitation regions separate individual *cloud bands*.

 ESS5
 Prof. Jip-Vi Vii

Temperature Structure

- ☐ Hurricane is characterized by a strong thermally direct circulation with the rising of warm air near the center of the storm and the sinking of cooler air outside.
- ☐ The warm core of the hurricane serves as a reservoir of potential energy, which is continuously being converted into kinetic energy by the thermally direct circulation.

Pressure Structure

☐ The upper portions of the storm are blanketed by a cirrus cloud cap due to overall low temperatures.

- ☐ The horizontal pressure gradient with altitude decreases slowly.
- ☐ At about 400 mb, pressures within the storm are approximate to that outside.
- ☐ Surface-400mb: Cyclonic circulation.
- ☐ 400mb-tropopause: anticyclonic circulation.

Hurricane Eye and Eye Wall

☐ The eye moves at a speed of 20 km/hr → The calm weather associated with the eye will last less than an hour.

- ☐ The eye is an area of descending air, relatively clear sky, and light winds which is about 25 km (15 mi) in diameter on average.
- ☐ A shrinking eye indicates storm intensification.
- ☐ The eye wall is comprised of the strongest winds, the largest clouds, and the heaviest precipitation with rainfall rates as high as 2500 mm/day (100 in.).

Hurricane Eye

(from Meteorology: Understanding the Atmosphere")

Photograph of the eye wall of Typhoon Vera taken from a "hurricane hunter" aircraft

Hurricane Formation

- ☐ *Tropical Disturbance*: Clusters of small thunderstorms.
- ☐ *Tropical Depression*: When at least one closed isobar is present, the disturbance is classified as a *tropical depression*.
- □ *Tropical Storm:* Further intensification, to wind speeds of 60 km/hr (37 mph), place the storm in the category of *tropical storm.*
- □ *Hurricane*: Hurricane status is gained when winds reach or exceed 120 km/hr (74 mph).

Tropical Disturbances and Easterly Waves

- ☐ Some tropical disturbances form in association with midlatitude troughs migrating toward lower latitudes, some form from ITCZ-related convection, but most develop from easterly waves.
- *Easterly waves*, or undulations in the trade wind pattern, spawn hurricanes in the Atlantic (typically 2–3000 km).
- □ Only about 10% tropical disturbances intensify into more organized, rotating storms.

 ESS5
 Prof. Jin-Yi Vin

Conditions Necessary for Hurricane Formation

☐ Hurricanes form only over deep (several tens of meters) water layers with surface temperatures in excess of <i>27 °C</i> .
□ Poleward of about 20°, water temperatures are usually below this threshold
☐ Hurricanes are most frequent in late summer and early autumn during high SST times
☐ <i>Coriolis force</i> is an important contributor, and as such, hurricanes do not form equatorward of 5°.
☐ Need an unstable atmosphere: available in the western tropical ocean bur not in the eastern parts of the ocean.
☐ Strong vertical shear must be absent for hurricane formation.

Prof. Jin-Yi Yu

Hurricane Movement

- ☐ Tropical disturbances and depressions are largely regulated by trade wind flow and simply move westward.
- ☐ For tropical storms and hurricanes, upper-level winds and ocean temperatures gain importance.
- ☐ Fully developed hurricanes move poleward.

Hurricane Dissipation

- ☐ After making landfall, a tropical storm may die out completely within a few days.
- □ Even as the storm weakens, it can still bring in huge amount of water vapor and rainfall hundreds of kilometers inland.

Hurricane Damages

- ☐ Heavy rainfalls
- ☐ Strong winds
- Tornadoes
- ☐ Storm Surges: A rise in water level induced by the hurricane.

Hurricane Induced Tornadoes

- ☐ Most hurricanes also contain clusters of tornadoes.
- ☐ Most pf these tornadoes occur in the right front quarter of the hurricane movement.
- ☐ It appears the slowing of the wind by friction at landfall contribute to the formation of tornadoes.

Hurricane Wind Structure

☐ Winds and surge are typically most intense in the *right front quadrant* of the storm where wind speeds combine with the speed of the storm's movement to create the area of highest potential impact.

Storm Surges

- □ Process 1: Hurricane winds drag surface waters forward and pileup the waters near coasts.
- □ Process 2: Lower atmospheric pressure raises sea level (for every 1 mb pressure decrease, sea level raises 1 cm).
- ☐ Storm surges raise costal sea level by a meter or two for most hurricanes, but can be as much as 7 meters.

Trend .vs. Multi-decadal Change

- ☐ Middle 1990s-Now: A significant increase in the numbers of hurricanes and intense hurricanes making landfall in the United States.
- □ 1970s-middle 1990s: lower than normal incidence of Atlantic hurricanes.
- ☐ It is still in debate where the recent increase of hurricane and its intensity is a sign of global warming or a part of natural multidecadal cycle.

Hurricane Forecasts

- ☐ The National Hurricane Center is responsible for predicting and tracking Atlantic and east Pacific hurricanes.
- ☐ Data are gathered through satellite observations, surface observations, and aircraft using *dropsondes*.
- ☐ Statistical, dynamic, and hybrid computer *models* running on supercomputers assist in future track position and storm intensity predictions.
- ☐ Future positions are given along six-hour trajectories with accuracy decreasing as lead time increases.

Hurricane Watches and Warnings

- ☐ *Hurricane watch*: if an approaching hurricane is predicted to reach land in more than 24 hours.
- ☐ *Hurricane Warning*: if the time frame is less, a *warning* is given.

Naming of Hurricanes

- ☐ When a tropical disturbance reaches the stage of tropical storm, it will be given a name.
- ☐ The name come from a A-W list created by World Meteorological Organization (WMO).
- ☐ Six lists are created for the Atlantic Ocean, each list is used for one hurricane season.
- ☐ The names of the hurricanes that cause devastating damages are removed from the list forever.

Atlantic Hurricane Names by Year						
2005	2006	2007	2008	2009		
Arlene	Alberto	Andrea	Arthur	Ana		
Bret	Beryl	Barry	Bertha	Bill		
Cindy	Chris	Chantal	Cristobal	Claudette		
Dennis	Debby	Dean	Dolly	Danny		
Emily	Ernesto	Erin	Edouard	Erika		
Franklin	Florence	Felix	Fay	Fred		
Gert	Gordon	Gabrielle	Gustav	Grace		
Harvey	Helene	Humberto	Hanna	Henri		
Irene	Isaac	Ingrid	Ike	Ida		
Jose	Joyce	Jerry	Josephine	Joaquin		
Katrina	Kirk	Karen	Kyle	Kate		
Lee	Leslie	Lorenzo	Laura	Larry		
Maria	Michael	Melissa	Marco	Mindy		
Nate	Nadine	Noel	Nana	Nicholas		
Ophelia	Oscar	Olga	Omar	Odette		
Philippe	Patty	Pablo	Paloma	Peter		
Rita	Rafael	Rebekah	Rene	Rose		
Stan	Sandy	Sebastien	Sally	Sam		
Tammy	Tony	Tanya	Teddy	Teresa		
Vince	Valerie	Van	Vicky	Victor		
Wilma	William	Wendy	Wilfred	Wanda		

Hurricane Intensity Scale

Table 12–2 The Saffir-Simpson Scale						
Category	Pressure mb	Wind S km/hr	Speed mph	Storm 5 m	Surge ft	Damage
1	≥ 980	119–154	74–95	1–2	4–5	Minimal
2	965–979	155–178	96–110	2-3	6–8	Moderate
3	945–964	179–210	111-130	3–4	9–12	Extensive
4	920-944	211-250	131–155	4–6	13-18	Extreme
5	< 920	> 250	> 155	> 6	> 18	Catastrophic

- ☐ The Saffir-Simpson scale.
- ☐ Five categories: larger numbers indicate lower central pressure, greater winds, and stronger storm surges.

