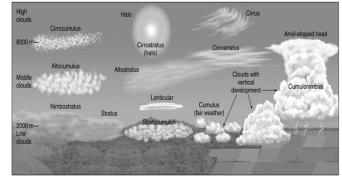


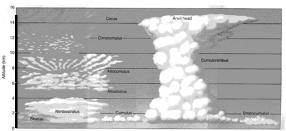
Frontal Lifting

- ☐ When boundaries between air of unlike temperatures (fronts) migrate, warmer air is pushed aloft.
- ☐ This results in adiabatic cooling and cloud formation.
- □ *Cold fronts* occur when warm air is displaced by cooler air.
- □ Warm fronts occur when warm air rises over and displaces cold air.

ESS55 Prof. Jin-Yi Yu


Cloud Type Based On Properties

- ☐ Four basic cloud categories:
- ✓ Cirrus --- thin, wispy cloud of ice.
- ✓ Stratus --- layered cloud
- ✓ Cumulus --- clouds having vertical development.
- ✓ Nimbus --- rain-producing cloud
- ☐ These basic cloud types can be combined to generate ten different cloud types, such as cirrostratus clouds that have the characteristics of cirrus clouds and stratus clouds.


ESS55 Prof. Jin-Yi Yu

Cloud Types

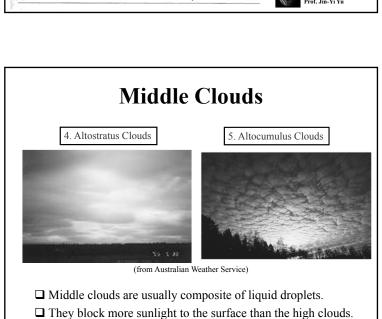
ESS55 Prof. Jin-Yi Yu

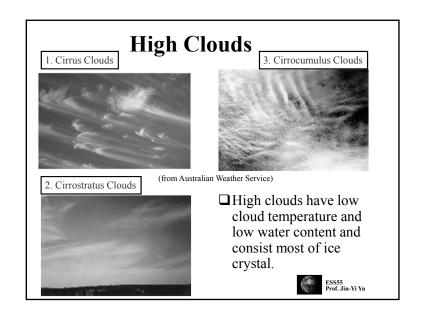
Cloud Types Based On Height

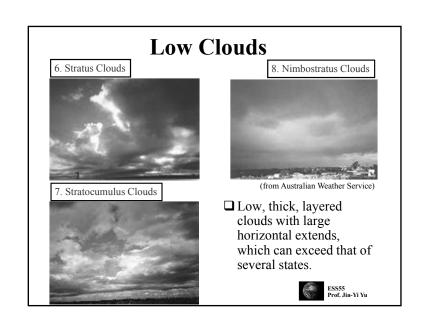
If based on *cloud base* height, the ten principal cloud types can then grouped into four cloud types:

- ✓ High clouds -- cirrus, cirrostratus, cirroscumulus.
- ✓ Middle clouds altostratus and altocumulus
- ✓ Low clouds stratus, stratocumulus, and nimbostartus
- ✓ Clouds with extensive vertical development cumulus and cumulonimbus.

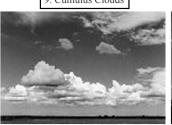
(from "The Blue Planet")

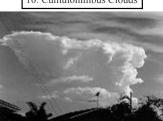



Cloud Classifications Table 12.1 Classification of Clouds in the Troposphere by Altitude Name Cirrus Feathery streaks Cirrocumulus Small ripples and delicate puffs Cirrostratus Translucent to transparent sheet, like a veil across the sky


High-level clouds Cloud base 6 to 15 km above sea level Middle-level clouds Cloud base 2 to 6 km above White to dark gray puffs and elonsea level gate ripples Altostratus Uniform white to gray sheet covering the sky Low-level clouds Cloud base below 2 km Uniform dull gray cover over the above sea level Nimbostratus Uniform gray cover, rain generally falling Patches of soft gray; in places patches coalescing to a layer Clouds with great vertical development Cloud base below 3 km Puffy cauliflower shape with flat Cumulus above sea level Large, puffy; white, gray and black; great vertical extent, often with Cumulonimbus (from "The Blue Planet") anvil-shaped head

Height





Clouds With Vertical Development 9. Cumulus Clouds 10. Cumulonimbus Clouds

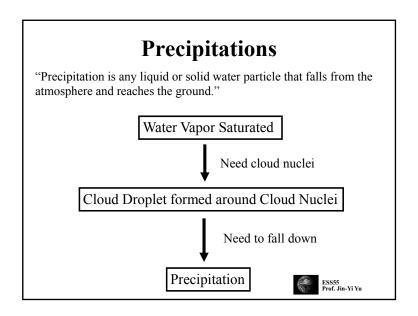
(from Australian Weather Service)

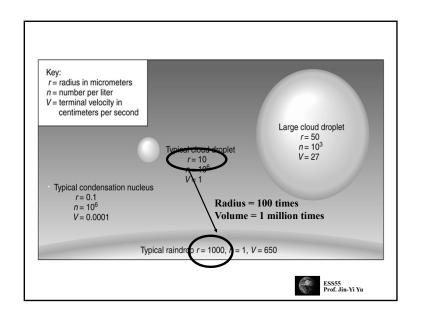
☐ They are clouds with substantial vertical development and occur when the air is absolute or conditionally unstable.

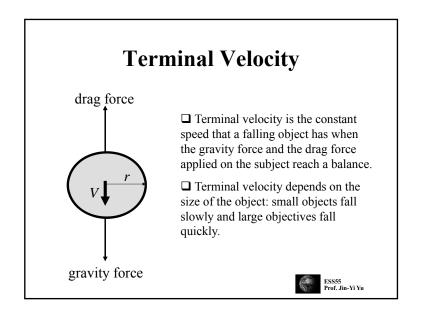
ESS55 Prof. Jin-Yi Yu

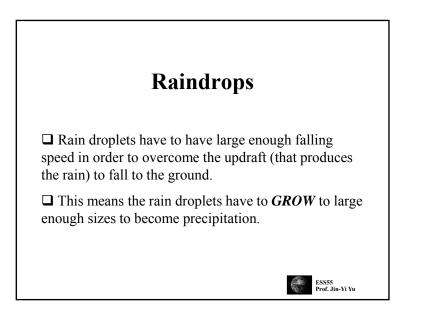
Clouds and Fronts Mid-Latitude Cyclone 1000 mb (From Weather & Climate)

Polar Stratospheric Clouds (PSCs)


- In winter the polar stratosphere is so cold (-80°C or below) that certain trace atmospheric constituents can condense.
- ☐ These clouds are called "polar stratospheric clouds" (PSCs).
- ☐ The particles that form typically consist of a mixture of water and nitric acid (HNO3).
- ☐ The PSCs alter the chemistry of the lower stratosphere in two ways: (1) by coupling between the odd nitrogen and chlorine cycles (2) by providing surfaces on which heterogeneous reactions can occur.




Lecture 7b: Precipitation Processes



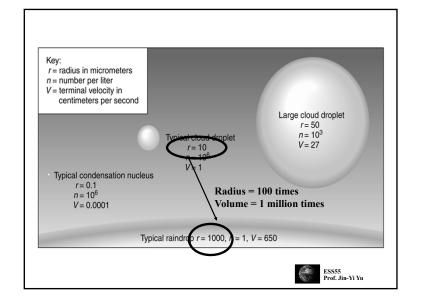
- ☐ Growth of Cloud Droplet
- ☐ Forms of Precipitations
- ☐ Cloud Seeding

How Raindrop Grows?

- ☐ Growth by Condensation (too small)
- ☐ Growth in Warm Clouds: Collision-Coalescence Process
- ☐ Growth in Cool and Cold Clouds: Bergeron Process, Riming (aka Accretion) and Aggregation

Growth by Condensation

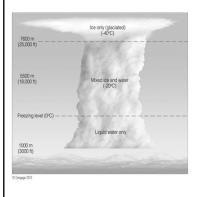
- ☐ Condensation about condensation nuclei initially forms most cloud drops.
- ☐ Insufficient process to generate precipitation.



Growth in Warm Clouds

- Most clouds formed in the Tropics, and many in the middle latitudes, are warm clouds.
- ☐ Those clouds have temperatures greater than 0°C throughout.
- ☐ The Collision-coalescence process generates precipitation.
- ☐ This process depends on the differing fall speeds of different-sized droplets.
- ☐ It begins with large collector drops which have high terminal velocities.

Collision


- ☐ Collector drops collide with smaller drops.
- ☐ Due to compressed air beneath falling drop, there is an inverse relationship between collector drop size and collision efficiency.
- ☐ Collisions typically occur between a collector and fairly large cloud drops.
- ☐ Smaller drops are pushed aside.
- ☐ Collision is more effective for the droplets that are not very much smaller than the collect droplet. ESS55
 Prof. Jin-Yi Yu

Coalescence

- ☐ When collisions occur, drops either bounce apart or coalesce into one larger drop.
- ☐ Coalescence efficiency is very high indicating that most collisions result in coalescence.
- ☐ Collision and coalescence together form the primary mechanism for precipitation in the tropics, where warm clouds dominate.

Cool and Cold Clouds

- ☐ A portion of most mid-latitude clouds have temperatures below the melting point of ice.
- ☐ Cold clouds are referred to those have temperature below 0°C throughout and consist entirely of ice crystals, supercooled droplets, or a mixture of two.
- ☐ Cool clouds are referred to those have temperatures above 0°C in the lower reaches and subfreezing condition above.

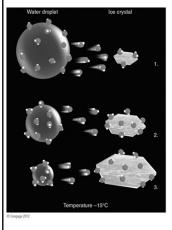
Supercooled Water

- \square Ice melts at 0°C, but water does not necessary freeze to ice at 0°C.
- ☐ Ice nuclei is needed to help water to get frozen.
- ☐ Certain microscopic particles, such as clay, organic particles, or bacteria, have a crystalline structure similar to ice that can allow water molecular to attach to and to build an ice lattice.
- ☐ Without enough ice nuclei, water can exist event its temperature is below between 0°C and -40°C, which are called "supercooled water".
- ☐ Supercooled water can result in freezing precipitation when they come in contact with a surface that has a temperature below 0°C.

An Example of Cool and Cold Cloud

Cumulonimbus clouds contain both ice (top, fuzzy cloud margins), liquid drops (bottom, sharp margins) and a mix of ice and liquid (middle)

ESS55 Prof. Jin-Yi Yu


Growth in Cool and Cold Clouds

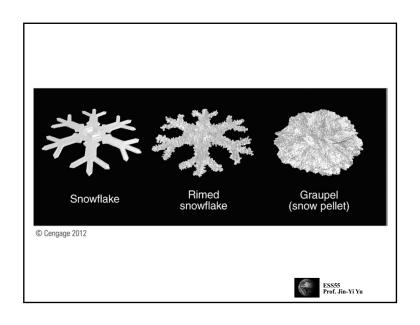
- ☐ Cool month mid-latitude and high latitude clouds are classified as cool clouds as average temperatures are usually below
- ☐ Clouds may be composed of (1) Liquid water, (2) Supercooled water, and/or (3) Ice.
- ☐ Coexistence of ice and supercooled water is critical to the creation of cool cloud precipitation - the Bergeron Process.

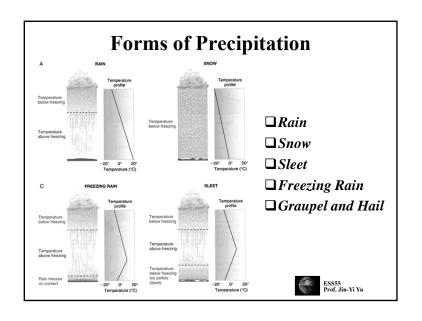
ESS55 Prof. Jin-Yi Yu

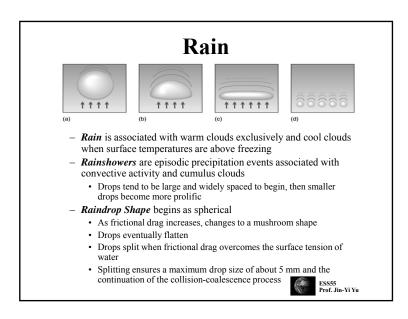
Bergeron Process

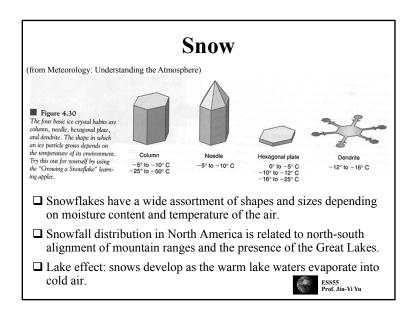
- ☐ Saturation vapor pressure of ice is less than that of supercooled water and water vapor.
- ☐ During coexistence, water will sublimate directly onto ice.
- ☐ Ice crystals grow rapidly at the expense of supercooled drops.
- ☐ The ice crystal becomes heavy enough to fall, then the riming and aggregation processes begin.

ESS55 Prof. Jin-Yi Yu

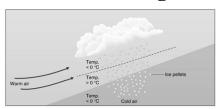

Riming and Aggregation







- ☐ Collisions between falling crystals and drops causes growth through *riming* and
- ☐ *Riming (accretion)*: liquid water freezing onto ice crystals producing rapid growth → producing graupels.
- ☐ Aggregation: the joining of multiple ice crystals through the bonding of surface water builds ice crystals to the point of overcoming updrafts > producing snowflakes.
- ☐ Collision combined with riming and aggregation allow formation of precipitation within 1/2 hour of initial formation. ESS55 Prof. Jin-Yi Yu

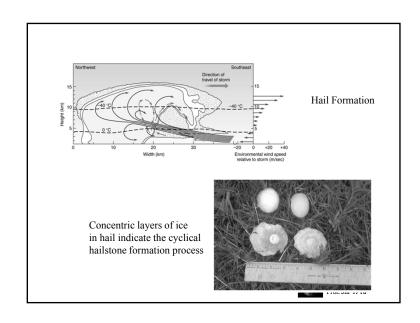


Sleet and Freezing Rain

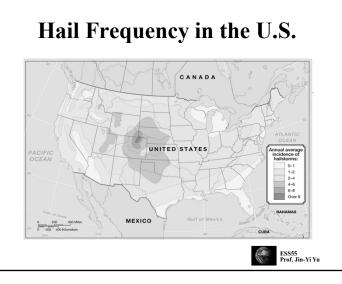
- Sleet begins as ice crystals which melt into rain through a mid-level inversion before solidifying in colder near surface air
- Freezing Rain forms similarly to sleet, however, the drop does not completely solidify before striking the surface
- When sleet hits the surface, it bounces and does not coat objects with a sheet of ice, as feezing rain does.

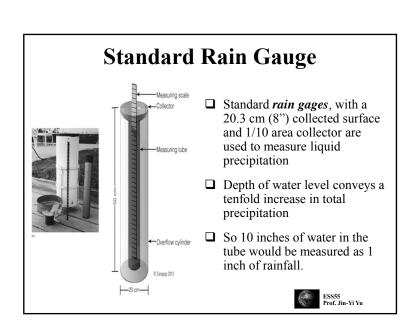
Graupel and Hail

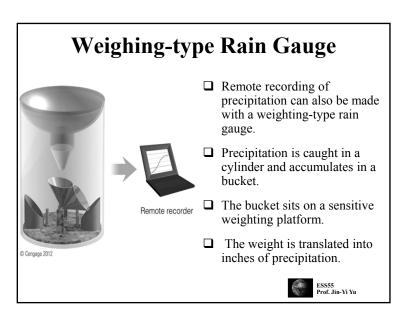
- Graupel are ice crystals that undergo extensive riming
 - · Lose six sided shape and smooth out
 - Either falls to the ground or provides a nucleus for hail
- Hail forms as concentric layers of ice build around graupel
 - Formed as graupel is carried aloft in updrafts
 - · At high altitudes, water accreting to graupel freezes, forming a layer
 - Hail falls but is eventually carried aloft again by an updraft where the process repeats
 - The ultimate size of the hailstone is determined by the intensity of the
 - Great Plains = highest frequency of hail events

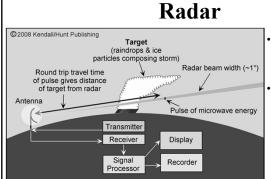


Freezing Rain and Sleet



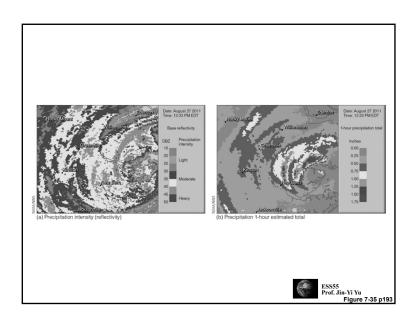

(Photographer: Lee Anne Willson)


Hail Frequency in the U.S. CANADA UNITED STATES MEXICO ESS55 Prof. Jin-Yi Yu



Cloud Seeding ☐ The objective is to convert some of the supercooled droplets in a cool clouds to ice and cause precipitation by the Bergeron process. ☐ Two primary methods are used to trigger the precipitation process. ☐ Dry ice is used to lower cloud temperature to a freezing point in order to stimulate ice crystal production leading to the Bergeron process. ☐ Silver iodide initiates the Bergeron process by directly acting as freezing nuclei.

ESS55 Prof. Jin-Yi Yu


☐ Under ideal conditions, seeding may enhance precipitation by about

- Weather radars are used to monitor precipitation.
- Radars send out microwave signals in a narrow beam from it transmitter in a very short time (about 1 millionth of a second).
- When microwaves encounter raindrops and hailstones, some of the energy is scattered back to the radar, whose the microwave echo is received.
- Based on the time between the microwave is transmitted and received, speed of light, antenna angle, radars can find the locations of rain in space

Measuring Snow □ Rain gages are inadequate for measuring frozen precipitation. □ Measurements of accumulated snow are used. □ Water equivalent of snow, a 10 to 1 ratio is assumed (i.e., 10 inches of snow will melt down to about 1 inch of water). □ Automated snow pillows are common in many locations. □ Detect snow weight and convert directly to water equivalent.

