FOCUS ON AN ADVANCED TOPIC

Adiabatic Charts

The adiabatic chart is a valuable tool for anyone

who studies the atmosphere. The chart itself is a graph that shows how various atmospheric elements change with altitude (see Fig. 6). At first glance, the chart appears complicated because of its many lines. We will, therefore, construct these lines on the chart step by step.

Figure 2 shows horizontal lines of pressure decreasing with altitude, and vertical lines of temperature in °C increasing toward the right. The height values on the far right are approximate elevations that have been computed assuming that the air temperature decreases at a standard rate of 6.5°C per kilometer.

In Fig. 3, the slanted solid red lines are called dry adiabats. They show how the air temperature would change inside a rising or descending unsaturated air parcel. Suppose, for example, that an unsaturated air parcel at the surface (pressure 1013 mb) with a temperature of 10°C rises and cools at the dry adiabatic rate (10°C per km). What would be the parcel temperature at a pressure of 900 mb? To find out, simply follow the dry adiabat from the surface temperature of 10°C up to where it crosses the 900mb line. Answer: about 0°C. If the same parcel returns to the surface, follow the dry adiabat back to the surface and read the temperature, 10°C.

On some charts, the dry adiabats are expressed as a potential temperature in Kelvins. The **potential temperature** is the temperature an air parcel would have if it were moved dry adiabatically to a pressure of 1000 mb. Moving parcels to the same level allows them to be observed under identical conditions. Thus, it can be

determined which parcels are potentially warmer than others.

The sloping dashed blue lines in Fig. 4 are called **moist adiabats**. They show how the air temperature would change inside a rising or descending parcel of *saturated* air. In other words, they represent the moist adiabatic rate for a rising or sinking saturated air parcel, such as in a cloud.

The sloping gray lines in Fig. 5 are lines of constant mixing ratio. At any given temperature and pressure, they show how much water vapor the air could hold if it were saturated—the saturation mixing ratio (ws) in grams of water vapor per kilogram of dry air (g/kg). At a given dew-point temperature, they show how much water vapor the air is actually holding-the actual mixing ratio (w) in g/kg. Hence, given the air temperature and dewpoint temperature at some level, we can compute the relative humidity of the air.* For example, suppose at the surface (pressure 1013 mb) the air temperature and dew-point temperature are 29°C and 15°C, respectively. In Fig. 5, observe that at 29°C the saturation mixing ratio (w_s) is 26 g/kg, and with a dew-point temperature of 15°C, the actual mixing ratio (w) is 11 g/kg. This produces a relative humidity of $^{11}/_{26} \times 100$ percent, or 42 percent.

The mixing ratio lines also show how the dew-point temperature changes in a rising or sinking unsaturated air parcel. If an unsaturated air parcel with a dew point of 15°C rises from the surface (pressure 1013 mb) up to where the pressure is 700 mb (approximately 3 km), notice in Fig. 5 that the dew-point temperature inside

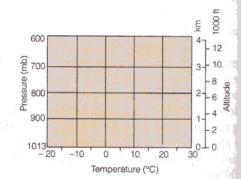


Figure 2

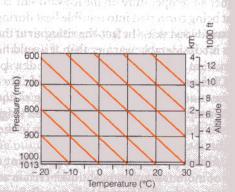


Figure 3

Figure 4

^{*}The relative humidity (RH) of the air can be expressed as: RH = $w/w_s \times 100\%$.