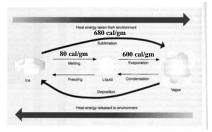

Chapter 5: Atmospheric Moisture

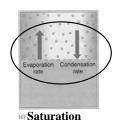
- ☐ Water Vapor and Liquid Water
- ☐ Indices of Water Vapor Content
- ☐ Distribution of Water Vapor
- ☐ Measuring Humidity


Introduction

- ☐ Over 70% of the planet is covered by water
- ☐ Water is unique in that it can simultaneously exist in all three states (solid, liquid, gas) at the same temperature
- ☐ Water is able to shift between states very easily
- ☐ The hydrologic cycle refers to the regular cycle of water through the earth-atmosphere system
- ☐ Liquification of water occurs frequently at normal Earth temperatures
 - Occurs when air is saturated with respect to water vapor
 - The addition of water vapor, or the lowering of temperature, in saturated air will lead to condensation

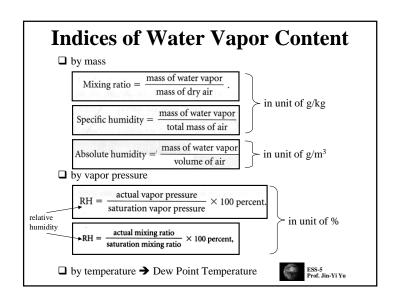
ESS-5

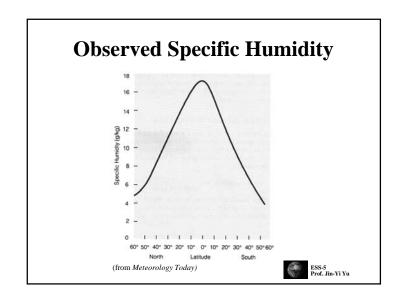
Phase Changes of Water

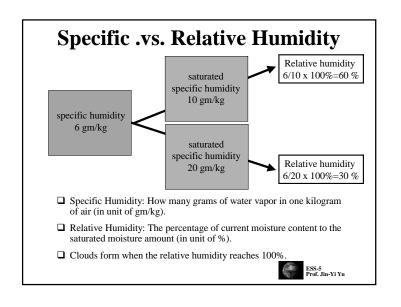

(from Meteorology: Understanding the Atmosphere)

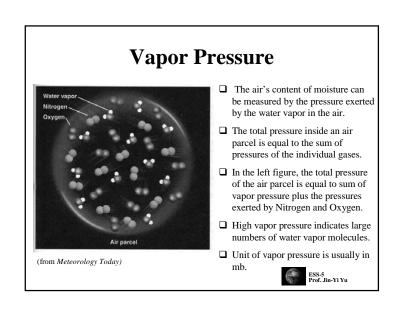
- ☐ Latent heat is the heat released or absorbed per unit mass when water changes phase.
- ☐ Latent heating is an efficient way of transferring energy globally and is an important energy source for Earth's weather and climate.

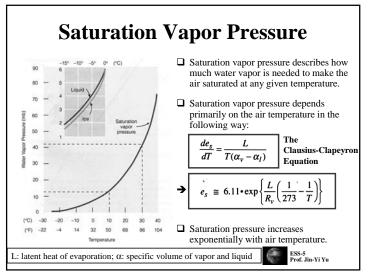
Water Vapor In the Air

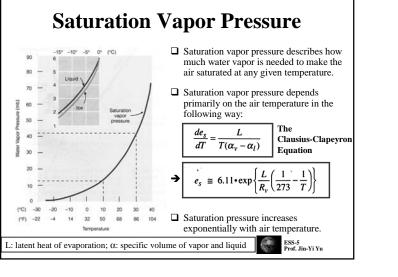


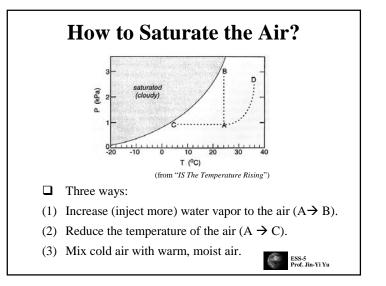

(from Understanding Weather & Climate)

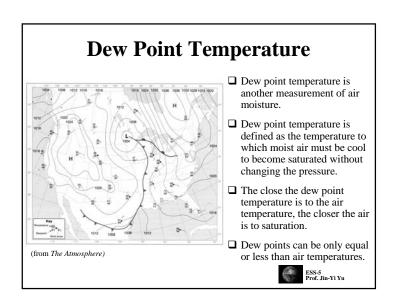

- ☐ Evaporation: the process whereby molecules break free of the liquid volume.
- □ Condensation: water vapor molecules randomly collide with the water surface and bond with adjacent molecules.




rof. Jin-Yi Yu





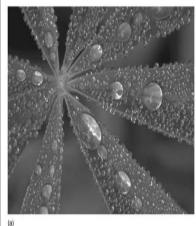


"Runway" Greenhouse Effect ☐ If a planet has a very high temperature that the air can never reach a saturation point → Water vapor can be added into the atmosphere. → More water vapor traps more heat (a greenhouse effect) → The planet's temperature increases furthermore → Ever more water evaporated into the atmosphere → More greenhouse effect → More warming → More water vapor → ESS-5 Prof. Jin-Yi Yu

Frost Point Temperature

☐ When air reaches saturation at temperatures below freezing the term *frost point* is used.

ESS-5 Prof. Jin-Yi Yu


Measuring Humidity

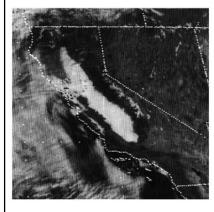
- ☐ The easiest way to measure humidity is through use of a *sling psychrometer* A pair of thermometers one of which has a wetted cotton wick attached to the bulb.
- ☐ The two thermometers measure the wet and dry bulb
- ☐ Swinging the psychrometer causes air to circulate about the
- ☐ When air is unsaturated, evaporation occurs from the wet bulb which cools the bulb.
- ☐ Once evaporation occurs, the wet bulb temperature stabilizes allowing for comparison with the dry bulb temperature.
- ☐ The wet bulb depression is found with a greater depression indicative of a dry atmosphere.
- ☐ Charts gauge the amount of atmospheric humidity.
- ☐ Aspirated and hair hygrometers are alternatives.

ESS-5 Prof. Jin-Yi Yu

Dew

- ☐ Liquid condensation on surface objects.
- ☐ Diabatic cooling of surface air typically takes place through terrestrial radiation loss on calm, cool, clear nights.

ESS-5 Prof. Jin-Yi Yu


Frost

- ☐Similar to dew except that it forms when surface temperatures are below freezing.
- ☐Deposition occurs instead of condensation.

ESS-5 Prof. Jin-Yi Yu

Fog

Simply a surface cloud when air either cools to the dew point, has moisture added, or when cooler air is mixed with warmer moister air.

Different types of fog found throughout the U.S.

