Waves in the Atmosphere and Oceans

Restoring Force
Conservation of potential temperature in the presence of positive static stability
=» internal gravity waves
L Conservation of potential vorticity in the presence of a mean gradient of
potential vorticity =» Rossby waves

* External gravity wave (Shallow-water gravity wave)
* Internal gravity (buoyancy) wave

* Inertial-gravity wave: Gravity waves that have a large enough
wavelength to be affected by the earth’s rotation.

* Rossby Wave: Wavy motions results from the conservation of potential
vorticity.

» Kelvin wave: It 1s a wave 1n the ocean or atmosphere that balances the
Coriolis force against a topographic boundary such as a coastline, or a
waveguide such as the equator. Kelvin wave 1s non-dispersive.
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Lecture 6: Adjustment under Gravity
in a Non-Rotating System
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* Overview of Gravity waves

« Surface Gravity Waves
e “Shallow” Water

o Shallow-Water Model
* Dispersion
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Goals of this Chapter

This chapter marks the beginning of more detailed study of the way the
atmosphere-ocean system tends to adjust to equilibrium.

The adjustment processes are most easily understood in the absence of
driving forces. Suppose, for instance, that the sun is "switched off," leaving
the atmosphere and ocean with some non-equilibrium distribution of
properties.

How will they respond to the gravitational restoring force?

Presumably there will be an adjustment to some sort of equilibrium. If so,
what 1s the nature of the equilibrium?

In this chapter, complications due to the rotation and shape of the earth will
be ignored and only small departures from the hydrostatic equilibrium will
be considered.

The nature of the adjustment processes will be found by deduction from the
equations of motion
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Gravity Waves

http://skywarn256.wordpress.com
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Gravity waves are waves generated in a fluid medium or at the interface between
two media (e.g., the atmosphere and the ocean) which has the restoring force of
gravity or buoyancy.

When a fluid element is displaced on an interface or internally to a region with a
different density, gravity tries to restore the parcel toward equilibrium resulting
in an oscillation about the equilibrium state or wave orbit.

Gravity waves on an air-sea interface are called surface gravity waves or surface

waves while internal gravity waves are called internal waves. £S5278
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Adjustment Under Gravity in a
Non-Rotating System

External Gravity Waves Internal Gravity Waves

adjustment of a homogeneous fluid adjustment of a density-stratified
with a free surface fluid
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Reduced Gravity

Pressure difference between A and B: Pressure difference between A and B:
AP=p,*g*h AP =(p,-p)*g*h

The adjustment process in Case B is exactly the same as in the Case A, except the

gravitational acceleration is reduced to a value g’, where buoyancy force =

density difference * g

g’ = glp, — pi)/pa.
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A One-Layer Fluid System
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We assume that the motion is

two dimensional in the x, z plane.
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Shallow Water Gravity Wave

[ +] ]
ﬁ A B, Bz
p+8pg p+8p,

P h

o

Governing Equation

We assume that the motion is
two dimensional in the x, z plane.

dp=pm— o

the same depth.

O Shallow water gravity waves may also occur at
thermocline where the surface water is separated
from the deep water.
referred to as the internal gravity waves).

(These waves can also

QO If the density changes by an amount dp/pl = 0.01,
across the thermocline, then the wave speed for
waves traveling along the thermocline will be only
one-tenth of the surface wave speed for a fluid of

= The shallower the water, the slower the wave.

Shallow water gravity waves are non-dispersive.

Shallow water wave speed ~ 200 ms! for an ocean depth of 4km
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Vertical Structure of Ocean

Temperature (°C)
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(from Climate System Modeling) ESS228
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Shallow and Deep Water

“Shallow” 1n this lecture means that the depth of the fluid layer
1s small compared with the horizontal scale of the perturbation,
1.e., the horizontal scale 1s large compared with the vertical
scale.

Shallow water gravity waves are the ‘long wave approximation”
end of gravity waves.

Deep water gravity waves are the “short wave approximation™
end of gravity waves.

Deep water gravity waves are not important to large-scale
motions in the oceans.
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Internal Gravity (Buoyancy) Waves

e

O In a fluid, such as the ocean, which is bounded both above and below, gravity waves propagate
primarily in the horizontal plane since vertically traveling waves are reflected from the boundaries to
form standing waves.

O In a fluid that has no upper boundary, such as the atmosphere, gravity waves may propagate vertically
as well as horizontally. In vertically propagating waves the phase is a function of height. Such waves
are referred to as internal waves.

Q Although internal gravity waves are not generally of great importance for synoptic-scale weather
forecasting (and indeed are nonexistent in the filtered quasi-geostrophic models), they can be important
in mesoscale motions.

Q For example, they are responsible for the occurrence of mountain lee waves. They also are believed to
be an important mechanism for transporting energy and momentum into the middle atmosphere and

are often associated with the formation of clear air turbulence (CAT). ESS228
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Quasi-Geostrophic Approximation

s v eV =—fTVeV
?"’ 4 é—g'*'ﬁvg_ S

" Quasi-geostrophic approximation use the geostrophic
wind for the actual wind everywhere except when
computing divergence.

* The Q-G approximation eliminates both sound and
gravity waves as solutions to the equations of motion.
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Lecture 7: Adjustment under Gravity
of a Density-Stratified Fluid
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* Normal Mode & Equivalent Depth
« Rigid Lid Approximation
* Boussinesq Approximation

* Buoyancy (Brunt-Viisild ) Frequency

« Dispersion of internal gravity waves
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Main Purpose of This Lecture

As an introduction to the effects of stratification, the
case of two superposed shallow layers, each of
uniform density, 1s considered.

In reality, both the atmosphere and ocean are
continuously stratified.

This serves to introduce the concepts of barotropic
and baroclinic modes.

This also serves to introduce two widely used
approximations: the rigid lid approximation and the
Boussinesqg approximation.
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Two Fluids of Different Density

gravity waves can exist in both places

Fluid 1
density = p,
mean depth = H,
velocity = U, V,

free surface (n)

interface (h)

2=-H, +hix, y, t)

Fluid 2
density = p,
mean depth = H,
velocity =U,, V,

Lower layer density p,

Z=-H
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Two Fluids: Layer 1 (-H, +h<z<n)

Py = pg(n — 2)
1 Momentum Equations
ou, /ot = —g 0n/ox,

dv, /0t = —g dn/0y,

z=nlx, y 1)

P Upper layer density g,
1

R

2=-H, *hix, y, t)

Continuity Equation

P2 Lower layer density p, a(”. + Hl — h}fﬂt 4
H[{ﬂulfﬁx - {311”’3}?] == ().

Taking time derivative of the continuity equation:

02 o>  8°
k= HI(BF + —F)gn = gH, V?y,
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Two Fluids: Layer 2 (z< —H, + h)
P2 = prg(n + Hy — h) + pog(—H, + h — 2)

d Momentum Equations
Ou, I . | on ,h

P 0= 0 ot plax Y ax
z=qlx, y 1) %—_ﬂ a_ﬁ_ ’@
ot py By g dy
U layer densit _
Py et dmiye ¢ = gpz — p1)lp2
— = reduced gravity
2=-H, +hix, y, 1) dContinuity Equation
P, Lousr tayer censiy 5, 0h/0t + Hy(0uy/0x + v,/0y) = 0.

 Taking time derivative
of the continuity

3y Eyn + g'h) = H, Vgn — g'n + g'h),




Adjustments of the Two-Fluid System

U The adjustments in the two-layer fluid system are governed by:
&2 8 @
321 — k) =H, (ﬁ L Ey‘i)gﬂ =gH, V¥y

52}! al az ,!3'1 i 2 [} !
B?z‘*Hz(E;‘f'Fa—F)(EHH +Hh) = H; Vi(gn - g'n + g'h),
U Combined these two equations will result in a fourth-order

equation, which is difficult to solve.

U This problem can be greatly simplified by looking for solutions
which n and h are proportional:

h(x, y, t) = un(x, y, t),

1 The governing equations will both reduced to this form:

d*n/ot* = ¢l V?y, provided that ~

gH (1 — @) =p"g — g'(1 — W)H, = 2. |

There are two values of p (and hence two
values of c,) that satisty this equation.

=>» The motions corresponding to these
particular vales are called normal modes
of oscillation.




Normal Modes

—— Phase speed (gH)* —— Phase speed 0.14(gH)*
e
B \
N i
A
Z 7.
barotropic mode baroclinic mode

The motions corresponding to these particular values of ¢, or p are called
normal modes of oscillation.

In a system consisting of n layers of different density, there are n normal
modes corresponding to the n degrees of freedom.

A continuously stratified fluid corresponding to an infinite number of

layers, and so there is an infinite set of modes. ESS228
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Structures of the Normal Modes

U The structures of the normal modes can be obtained by solving this equation (from
previous slide):

L Or, we can use the concepjt of the one-layer shallow water model, where the phase speed
(c) of the gravity wave is frelated to the depth of the shallow water (H):

e zaf o

U Using this concept, we can assume each of the normal mode behaves like the one-layer
shallow water with a “equivalent depth” of H,:

¢ = gH(l — g'H,H,/gH* "), Solution 1

\ nh~ H/Hy,  wy/u, =1 - g'H,/gH |(brotropic mode)

gH? — gHH, + ¢'H\H, = 0. | :
¢t = (¢'H,Hy/H)1 + g'H,Hy/gi*-), | Solution 2

— | wha —g'HyJgH, uy/u, ~ —H,/H,. |(baroclinic mode)

= JUNN Y, )
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Structures of the Normal Modes

z=nlx, y 1)
free surface (n) —

H 1 Upper layer density p,
interface (h) =~
z=-H,+hix, y, 1)

H 9 Lower layer density p,

——» Phase speed (gH)” ——» Phase speed 0.14(gH)*

_._.-—-"'"""—

Z Z
Barotropic mode Baroclinic mode
co = gH(1 — g'H,H,/gH* "), ¢} = (g'HH,/H)1 + g'H H,JgH* "),
?fﬂ'l ~ H;’H;, Hzful =] - g*Hl,ng" e ’ﬂh & _EIHIJ"EH! ulfrul &~ '"HIIHI'
nN>h ; u,&u, of same signs n<h ; u,&u, of opposite sigvl}.smn_Yi -
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Equivalent Depth (H.,)

e An N-layer fluid will have one barotropic mode and (N-1)
baroclinic modes of gravity waves, each of which has its own
equivalent depth.

e Once the equivalent depth 1s known, we know the dispersion
relation of that mode of gravity wave and we know how
fast/slow that gravity wave propagates.

For the barotropic mode: He=H

:=gH,.
e For the baroclibnic mode: He = g’/g * H,H,/H

e For a continuously stratified fluid, 1t has an infinite number of
modes, but not all the modes are important. We only need to
identify the major baroclinic modes and to find out their
equivalent depths.

ESS228
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An example of Equivalent Atmosphere

Equivalent depth for an incompressible atmosphere
N?H?
xlg

ho =

Rossby radius of deformation
(gD)'?
f

For a barotropic ocean: L =

The nth baroclinic Rossby radius is:
NH

Lp, = 7 . where N is the Brunt-\aisala frequency, H is the scale height, andn=1, 2, ...
nw [y

The gravity wave speed, and thus the Rossby radius,
increases proportionally with the depth of the disturbance.

The gravity wave speed, and thus the Rossby radius, increases
with stability by around a factor of two from steep lagse rates

1 1t1 $S228
to 1sothermal conditions. kssas



Final Adjusted State

/ Final Adjusted State \ Radius of deformation:

a=c/|f| =(gH)"*/\f]

" {—I+e"" for x>0

> —— ==
No 1 — e¥le for x <0,

—> v = —(gno/ fa) exp(— |x|/a).

* The steady equilibrium solution is not one of rest, but is a geostrophic balance.

* The equation determining this steady solution contains a length scale a, called the
Rossby radius of deformation.

*The energy analysis indicates that energy is hard to extract from a rotating fluid.
In the problem studied, there was an infinite amount of potential energy available
for conversion into kinetic energy, but only a finite amount of this available energy
was released. The reason was that a geostrophic equilibrium was established, and

such an equilibrium retains potential energy.



Rossby Radius of Deformation

For Barotropic Flow | | For Baroclinic Flow

, Brunt-Vaisala frequency -
\ g ) ' l. }" ’\ H .

Lh —

fo
water depth f' ) equivalent depth

* In atmospheric dynamics and physical oceanography, the Rossby radius of
deformation 1s the length scale at which rotational effects become as
important as buoyancy or gravity wave effects in the evolution of the flow
about some disturbance.

« “deformation”: It is the radius that the direction of the flow will be
“deformed” by the Coriolis force from straight down the pressure gradient to
be in parallel to the isobars.

* The size of the radius depends on the stratification (how density or potential
temperature changes with height) and Coriolis parameter.

ESS228
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Rossby Number

ko =L/C/oLl)

« Rossby number 1s a non-dimensional measure of the
magnitude of the acceleration compared to the Coriolis force:

(U LY foU)

* The smaller the Rossby number, the better the geostrophic
balance can be used.
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Rigid Lid Approximation

(for the upper layer)

py = pg(n — 2)
z=qlx, y, 1)

& U Momentum Equations

Upper layer density g, ﬂu“"ﬂt = =g ﬂqfﬁ:c,
_—— \ 0v,/0t = —g On/dy,

z=-H, *hix, y, 1)

L Continuity Equation

(n + H, — h)/or>

Lower layer density p,

H,(0u,/dx + 0v,/dy) =ﬂ/

have be achieved.

C—oh/at D H,(du, /dx + dv,/dy) = O,

* For baroclinic modes, surface displacements (7))
are small compared to interface displacements (4).

* [f there is a rigid lid at z=0, the identical pressure gradients would

ESS228
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Purpose of Rigid Lid Approximation

« Rigid lid approximation: the upper surface was held fixed but
could support pressure changes related to waves of lower
speed and currents of interest.

» QOcean models used the "rigid lid" approximation to eliminate
high-speed external gravity waves and allow a longer time
step.

e As aresult, ocean tides and other waves having the speed of
tsunamis were filtered out.

« The rigid lid approximation was used in the 70's to filter out
gravity wave dynamics in ocean models. Since then, ocean
model have evolved to include a free-surface allowing fast-

moving gravity wave physics.

ESS228
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Boussinesq Approximation

(for the lower layer)

g =g(p:s — p1)p2 \

n L ‘]'hr ¥, 1)
Upper layer density p, L Momentum Equations
h - Ouy % on
___.-—-'-"--__ —_— = g —
z=-H, + hix, y, 1) ot 0,/ 0x

vy, /P \M
Lower layer density p, —\ ot -
acC . s

oh/ot + H,(du,

ox + Ov,/dy) = 0.

* Boussinesq approx: replace the ratio (p,/p,) by
unity in the momentuny equation.

" * We keep the density difference in this
Ouy [0t = j 0x — g' Oh/ox, g’ term, because it involves density
Ov, /0t = @fiw’ﬂy — g’ dh/0y. difference (p,- p,)/ p,*g, which is

related to the buoyancy force.



Purpose of Boussinesq Approximation

This approximation states that density differences are sufficiently small to
be neglected, except where they appear in terms multiplied by g, the
acceleration due to gravity (i.e., buoyancy).

In the Boussinesq approximation, which is appropriate for an almost-
incompressible fluid, it assumed that variations of density are small, so that
in the inertial terms, and in the continuity equation, we may substitute p by
Po» @ constant. However, even weak density variations are important in
buoyancy, and so we retain variations in p in the buoyancy term in the
vertical equation of motion.

Sound waves are impossible/neglected when the Boussinesq approximation
is used, because sound waves move via density variations.

Boussinesq approximation is for the problems that the variations of
temperature as well as the variations of density are small. In these cases,
the variations in volume expansion due to temperature gradients will also
small. For these case, Boussinesq approximation can simplify the problems
and save computational time.
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After Using the Two Approximations

U Upper layer
ou, [0t = —g On/ox,

2= qlx, y1)

M — dv, /ot = —g on/dy,
h Upper layer density p —ch/ot + H(Ou,/0x + dv,/dy) =0
A OLower layer

T+ b, 1) duy ot = —g onfox — g’ Ohfox,

dv, /0t = —g dn/dy — g’ dh/0y.
oh/ot + H,(6u,/0x + dv,/éy) =0

Lower layer density p,

-H

 After the approximations, there is no 1 in the two continuity equation =» They
can be combined to become one equation.

» The two momentum equations can also be combined into one single equation
without 1.

» At the end, the continuity and momentum equations for the upper and lower
layers can be combined to solve for the dispersive relation for the baroclinic

mode of the gravity wave. ESS228
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Brunt-Vaisala Frequency (N)

O Consider a parcel of (water or gas) that has density of p, and the environment with a
density that is a function of height: p = p(z). If the parcel is displaced by a small vertical
increment Z', it will subject to an extra gravitational force against its surroundings of:

82 z!

— » A fluid parcel in the presence of stable
07 0
P dtQ (P ( )) stratification (NV? >0) will oscillate vertically
Ip(2) if perturbed vertically from its starting
plz) — P Z’ position.

» In atmospheric dynamics, oceanography, and
82 2z’ g ()p( z) ] geophysics, the Brunt-Vaisala frequency, or
— - buoyancy frequency, is the angular frequency
at which a vertically displaced parcel will
oscillate within statically stable environment.

>

N py Oz

-> Z’ — Z eV ™ N2t » The Brunt—Viisila frequency relates to
0 internal gravity waves and provides a useful

V description of atmospheric and oceanic
wherelnv — \/ 9 0_9)(3) N = g ﬁ , stability.
Po 0Oz _ ESS228
0 dz for the atmosphere Prof. Jin-Yi Yu
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Internal Gravity Waves in Atmosphere and Oceans

http://skywarn256.wordpress.com

In Oceans In Atmosphere — w-.. ‘:ma...: .;mmm..

. | & §® §R ¥
N — \/_ié)p(z) v — g df
po 02  Vodz

O Internal gravity waves can be found in both the statically stable (d6/dz>0) atmosphere
and the stably stratified (-dp/dz>0)ocean.

U The buoyancy frequency for the internal gravity wave in the ocean is determined by the
vertical density gradient, while it is determined by the vertical gradient of potential
temperature in the atmosphere.

U In the troposphere, the typical value of N is 0.01 sec!, which correspond to a period of
about 10 minutes.

O Although there are plenty of gravity waves in the atmosphere, most of them have small
amplitudes in the troposphere and are not important, except that the gravity waves
generated by flows over mountains. These mountain waves can have large amplitudes.

U Gravity waves become more important when they propagate into the upper atmosphere
(particularly in the mesosphere) where their amplitudes got amplified due to low air

density there. W FSS228
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Dispersion of Internal Gravity Waves

mean flow zonal wavenumber vertical wavenumber  total Wavenumber\
~ . ) /2 1/2 \1
b=y — ik = £Nk/ k+m) = + Nk/ ||
G J

i) IS alwayS smaller than N!! | internal gravity waves can have

any frequency between zero and

D Phase Velocity: a maximum value of N.

¢y =V/kand,c; =V/m

U Group velocity:
oV Nm?

C'gx == ﬁ ZEZIZ (kz +m2)3/2

- (N

(from H.-C. Kuo, National Taiwan Univ.) ng 8 m (k2 _|_ . 2) 3 / 2

U The phase velocity and group velocity are perpendicular
and that the vertical components of the phase and group
velocities have opposite sign: if a wavepacket moves
upward to the right, the crests move downward to the
right.

UIn the atmosphere, internal gravity waves
generated in the troposphere by cumulus
convection, by flow over topography, and by
other processes may propagate upward many
scale heights into the middle atmosphere.



Kelvin Waves

The Kelvin wave is a large-scale wave motion of great practical importance in
the Earth’s atmosphere and ocean.

The Kelvin wave is a special type of gravity wave that is affected by the
Earth’s rotation and trapped at the Equator or along lateral vertical boundaries
such as coastlines or mountain ranges.

The existence of the Kelvin wave relies on (a) gravity and stable stratification
for sustaining a gravitational oscillation, (b) significant Coriolis acceleration,
and (c) the presence of vertical boundaries or the equator.

There are two basic types of Kelvin waves: boundary trapped and equatorially
trapped. Each type of Kelvin wave may be further subdivided into surface and
internal Kelvin waves.

Atmospheric Kelvin waves play an important role in the adjustment of the
tropical atmosphere to convective latent heat release, in the stratospheric quasi-
biennial oscillation, and in the generation and maintenance of the Madden—
Julian Oscillation.

Oceanic Kelvin waves play a critical role in tidal motion, in the adjustment of
the tropical ocean to wind stress forcing, and in generating and sustaining the
El Nino Southern Oscillation. (from Bin Wang 2002)




Kelvin Waves

Governing Equations

EiE_ _ % (Z:>:Re{(g.((z)))exp[ék(m—ct)]}
dt fo e
dv dh f
— + fu = —g—; H =const x exp | — =y
Y dt dy ‘ ( c )
‘ dh ou  Ov

l_) atP(E5) - O Fay
X

A unique boundary condition o oY
y=018v=20 gD

A Kelvin wave 1s a type of low-frequency gravity wave in the ocean or
atmosphere that balances the Earth's Coriolis force against a topographic
boundary such as a coastline, or a waveguide such as the equator.

Therefore, there are two types of Kelvin waves: coastal and equatorial.

A feature of a Kelvin wave i1s that it 1s non-dispersive, 1.€., the phase speed
of the wave crests 1s equal to the group speed of the wave energy for all

frequencies.

ESS228
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Costal Kelvin Waves

f

H = const X exp | —=y
c

Atthecoasty = 0 18 v = O:

Fig. 10.3. Northern hemisphere Kelvin waves on opposite sides of a channel that is wide compared with the
Rossby radius. In each vertical plane parallel to the coast, the currents {(shown by arrows) are entirely within the
plane and are exactly the same as those for a long gravity wave in a nonrotating channel. However, the surface
elevation varies exponentially with distance from the coast in order to give a geostrophic balance. This means
Kelvin waves move with the coast on their right in the northern hemisphere and on their left in the southern hemi-
snhera. [From Martimer (197711

Coastal Kelvin waves always
propagate with the shoreline on
the right in the northern 4
hemisphere and on the lgft in
the southern hemisphgr’é.

In each vertical plapé to the
coast, the currents/(shown by
arrows) are entirely within the
plane and are exactly the same
as those for a long gravity wave
in a non-rotating channel.

However, the surface elevation
varies exponentially with
distance from the coast in order
to give a geostrophic balance.

ESS228
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Equatorial Kelvin Waves

sea level

Kelvin Wave =)

thermocline

The equator acts analogously to a topographic boundary for both the
Northern and Southern Hemispheres, which make the equatorial Kelvin
wave to behaves very similar to the coastally-trapped Kelvin wave.

Surface equatorial Kelvin waves travel very fast, at about 200 m per
second. Kelvin waves 1n the thermocline are however much slower,
typically between 0.5 and 3.0 m per second.

They may be detectable at the surface, as sea-level 1s slightly raised above
regions where the thermocline is depressed and slightly depressed above
regions where the thermocline 1s raised.

The amplitude of the Kelvin wave is several tens of meters along the
thermocline, and the length of the wave 1s thousands of kilometres.

ESS228

Equatorial Kelvin waves can only travel eastwards. (& 8
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1997-98 El Nino

SST ANOMALIES °C
JAN 05, 1997
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Delayed Oscillator Theory

3 — D

Rossby wave

1 Wind forcing at the central Pacific:
produces a downwelling Kevin wave
propagating eastward and a upwelling
Rossby wave propagating westward.

RN

T T ]

ANE

N

1 wave propagation: the fast kelvin wave
causes SST warming at the eastern
basin, while slow Rossby wave is
reflected at the western boundary.

R —

RS

 wave reflection: Rossby wave is
reflected as a upwelling Kelvin wave
and propagates back to the eastern
basin to reverse the phase of the ENSO
cycle.

SR

NN E NN

AN

=3

N

A ENSO period: 1s determined by the
propagation time of the waves.
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Wave Propagatlon and Reflection

25 days

F§FTF

equatorial Kelvin wave

FdF

£ ) = [
Loagg bt

50 days

Lo gihude

75 days

r8FE T

FEEsns

o -— Bl . -
lml,‘lu-d-

100 days

P iFEd

[ ENEN N

a1
coastm '
T

. ' L - - - E__] L]
Logituze

¥

175 days

Loagbude

[ EERE

FEE e s

e §EFRT

[

225 days
Lm?'IudI
275 days
”ﬁ-—- =
—.*_4

(Figures from IRI)

O It takes Kevin wave (phase
speed = 2.9 m/s for the first
baroclinic mode) about 70

days to cross the Pacific
basin (17,760km).

O It takes Rossby wave about

200 days (phase speed = 0.93
m/s) to cross the Pacific
basin.
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Lecture 8: Adjustment in a Rotating System

Large-scale disturbance Small-scale disturbance
L>>2nLg L<<2nlg

|I.I.:_ g
T

Final adjusted state Final adjusted state

* Geostrophic Adjustment Process
* Rossby Radius of Deformation

(o ESS228
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Geostrophic Adjustments

The atmosphere 1s nearly always close to geostrophic and hydrostatic
balance.

If this balance 1s disturbed through such processes as heating or cooling,
the atmosphere adjusts itself to get back into balance. This process is called
geostrophic adjustment.

A key feature in the geostrophic adjustment process is that pressure and
velocity fields have to adjust to each other in order to reach a geostrophic
balance. When the balance 1s achieved, the flow at any level is along the
isobars.

We can study the geostrophic adjustment by studying the adjustment in a
barotropic fluid using the shallow-water equations.

The results can be extended to a baroclinic fluid by using the concept of
equivalent depth.
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Geostrophic Adjustment Problem

shallow water model

du’ - dh’

—_— — LII — —_—

ar 70 8 ox

dv’ b f , ah'

_ M — e _

ot JO g ay
ah' du’ o'
—+ H — ()
at dx ay

ﬁﬁ'f .
¥‘|‘,f0

du’ o'
e Y=o
(8.1‘ + 811-‘)

—

¥

¥

2h' L, (9% 0*h L fHE =0
—_— (1' . ) - ] ':} —
ot 2 dx2 0 v
ar ah’
% _ %a_; =0 /= 0.y =2/ fo— W/ H = Const.

Vv

If we know the distribution of perturbation potential vorticity (Q) at the initial time, we

know for all time:

Q' (x,y.) =0 (x,9,0

And the final adjusted state can be determined without solving the time-dependent

problem.
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An Example of Geostrophic Adjustment
/ Initial Perturbed State\ / Final Adjusted State \

motionless (u=0 and v=0)

Inertial-gravity waves
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Final Adjusted State

/ Final Adjusted State \ Radius of deformation:

a=c/|f| =(gH)"*/\f]

" {—I+e"" for x>0

> —— ==
No 1 — e¥le for x <0,

—> v = —(gno/ fa) exp(— |x|/a).

* The steady equilibrium solution is not one of rest, but is a geostrophic balance.

* The equation determining this steady solution contains a length scale a, called the
Rossby radius of deformation.

*The energy analysis indicates that energy is hard to extract from a rotating fluid.
In the problem studied, there was an infinite amount of potential energy available
for conversion into kinetic energy, but only a finite amount of this available energy
was released. The reason was that a geostrophic equilibrium was established, and

such an equilibrium retains potential energy.



Rossby Radius of Deformation

For Barotropic Flow | | For Baroclinic Flow

, Brunt-Vaisala frequency -
\ g ) ' l. }" ’\ H .

Lh —

fo
water depth f' ) equivalent depth

* In atmospheric dynamics and physical oceanography, the Rossby radius of
deformation 1s the length scale at which rotational effects become as
important as buoyancy or gravity wave effects in the evolution of the flow
about some disturbance.

« “deformation”: It is the radius that the direction of the flow will be
“deformed” by the Coriolis force from straight down the pressure gradient to
be in parallel to the isobars.

* The size of the radius depends on the stratification (how density or potential
temperature changes with height) and Coriolis parameter.

ESS228
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» The Rossby radius is considerably larger near the equator.




Rossby Radius and the Equilibrium State

Mass and Velocity Energy Partition
C " d .2 2
- = = K&hat 1l K.E.:PE. = xia*:1l,
] I‘ H \ H
wave number deformation radius

* For large scales (K,a « 1), the potential vorticity perturbation i1s mainly associated with
perturbations in the mass field, and that the energy changes are in the potential and internal
forms.

* For small scales (Kya » 1) potential vorticity perturbations are associated with the velocity
field, and the energy perturbation is mainly kinetic.

* At large scales (K ! » a; or Kja « 1), it is the mass field that is determined by the initial
potential vorticity, and the velocity field is merely that which is in geostrophic equilibrium
with the mass field. It is said, therefore, that the large-scale velocity field adjusts to be in
equilibrium with the large scale mass field.

* At small scales (Ky;! « @) it is the velocity field that is determined by the initial potential
vorticity, and the mass field is merely that which is in geostrophic equilibrium with the
velocity field. In this case it can be said that the mass field adjusts to be in equilibrium with

the velocity field. ESS228

Prof. Jin-Yi Yu




Examples

Initial Height (h) Initial Velocity (v)
L
* If the Rossby radius of deformation is very small (i.e., Ly <<L),
Final Height (h) Final Velocity (v)

velocity
adjusted to
_JL e mass
* If the Rossby radius of deformation is comparable with L (i.e., Ly = L),
Final Height (h) Final Velocity (v) ,
velocity and
A mass both
-—Av- adjusted
* If the Rossby radius of deformation is very large (i.e., Ly >> L),

Final Height (h) Final Velocity (v) mass

adjusted to
velocity




Rossby Radius and the Equilibrium State

Large-scale disturbance
L>> EII:LR

p = constant

Final adjusted state

+ perturbation mass field mostly
retained

= winds adjust to mass field

= perturbation size changes little

e Wind vectors

Small-scale disturbance
L == ZELR

p = constant

Final adjusted state

= perturbation spreads out, so looks
weaker

= some winds are retained

= mass field adjusts to the winds

The COMET Program

« If the size of the disturbance is
much larger than the Rossby
radius of deformation, then the
velocity field adjusts to the
initial mass (height) field.

« If the size of the disturbance is
much smaller than the Rossby
radius of deformation, then the
mass field adjusts to the initial
velocity field.

« If the size of the disturbance is
close to the Rossby radius of
deformation, then both the
velocity and mass fields undergo
mutual adjustment.
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What does the Geostrophic Adjustment Tell Us?

* An important feature of the response of a rotating fluid to gravity is that it
does not adjust to a state of rest, but rather to a geostrophic equilibrium.

« The Rossby adjustment problem explains why the atmosphere and ocean
are nearly always close to geostrophic equilibrium, for if any force tries to
upset such an equilibrium. the gravitational restoring force acts quickly to
restore a near-geostrophic equilibrium.

* For deep water in the ocean, where H 1s 4 or 5 km. ¢ 1s about 200 m/s and
therefore the Rossby radius a = ¢/f ~ 2000 km.

* Near the continental shelves, such as for the North Sea where H=40m, the
Rossby radius a = ¢/f ~ 200 km. Since the North Sea has larger dimensions
than this, rotation has a strong effect on transient motions such as tides and
surges in that ocean region.
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Lecture 9: Tropical Dynamics

* Equatorial Beta Plane

« Equatorial Wave Theory

* Equatorial Kelvin Wave

* Adjustment under Gravity near the Eq.
« Gill Type Response
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Overview

In the Mid-latitudes, the primary energy source for synoptic-scale
disturbances 1is the zonal available potential energy associated with the
latitudinal temperature gradient; and latent heat release and radiative
heating are usually secondary contributors.

«In the tropics, however, the storage of available potential energy is
small due to the very small temperature gradients in the tropical
atmosphere. Latent heat release appears to be the primary energy
source.

*The dynamics of tropical circulations 1s very complicate, and there 1s
no simple theoretical framework, analogous to quasi-geostrophic
theory for the mid-latitude dynamics, that can be used to provide an
overall understanding of large-scale tropical motions =» no simple
pressure-wind relationship.
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Equatorial Waves

* [Equatorial waves are an important class
v ) of eastward and westward propagating
disturbances in the atmosphere and in
the ocean that are trapped about the
equator (1.e., they decay away from the
equatorial region).

« Diabatic heating by organized tropical
convection can excite atmospheric
equatorial waves, whereas wind stresses
can excite oceanic equatorial waves.

« Atmospheric equatorial wave
propagation can cause the effects of
convective storms to be communicated
over large longitudinal distances, thus
producing remote responses to localized

heat sources. @ 55228
' Prof. Jin-Yi Yu




El Nino Teleconnection

mean tropical'troposphere

Warming (in 3 months)(,;ol’\
-

Indian Ocean

(IO warming; 3 mon later)

Subtropieal Jet

Wavetrains

Atlantic Ocean

(AO warming; 6 mon later)

Subtropical Jetstream
Wavetrains
Southern AnnualiMode




Tropical Tropospheric Temperature Response to ENSO

MSU Ch2 temperature anomaly (K)

Mean tropospherlc temperature Varlatlon in Troplcs (20S- 20N)

- 82- 83¢/ ' 7 ” ”797—98_7>

-
(22

-

14

o
12

[=]

é

(Chiang and Sobel 2002) ¥ , . . ’ 0
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

Year
tropical troposphgric temperature correlated with Nino3 SST index

-1

growing phase

N w ¥ L R Tl R ™ .- * aAF
- n» AT f‘J’. ol \ o oS § T'J
A= A L | ‘ - [ e
- g [ . \ "\ . \
- . 7N ;\ n
= ' 3 ) 4 J4
- I A g = s
- L'r' W N -

- ey e 7 P
N w2 e - V)
.t A - » yo y h_ ) -1

’\ " 3;.,5

“MZ"’%

g
~ B 571 |0
) ';é’:v. K..\ ﬂ\’;’ l"alr‘{

L . - : :\1.- A

§Haild
!Ill!

e o B
decaving phase

During El Nino events, tropospheric
temperature warms uniformly (0.5°-
1°C) over the global tropical strip.

The tropical free atmosphere cannot
maintain horizontal pressure gradients,
and temperature anomalies become
uniformly distributed over the global
Tropics on timescales of a month or
two.

The Kelvin and Rossby wave
responses to the El Nino forcing
spread the tropospheric warming from
eastern-to-central Pacific to other
ocean basins.

The lagged response time in other
basins may be affected by air-sea
coupling in the remote basins.



Gill’s Response to Symmetric Heating

PR T S R S I Y Y

(from Gill 1980)

-4
* This response consists of a eastward-propagating Kelvin wave to the east of the symmetric
heating and a westward-propagating Rossby wave of n=1 to the west.

* The Kelvin wave produces low-level easterlies to the east of the heating, while the Rossby
wave produces low-level westerlies to the west.

* The casterlies are trapped to the equator due to the property of the Kelvin wave.
* The n=1 Rossby wave consists of two cyclones symmetric and straddling the equator.

* The meridional scale of this response is controlled by the equatorial Rossby radius, which
is related to the B-effect and the stability and is typically of the order of 1000km.



Equatorial B-Plane Approximation

[f-plane approximation: On a rotating sphere such as the earth, f varies with
the sine of latitude; in the so-called f-plane approximation, this variation is
1ignored, and a value of f appropriate for a particular latitude 1s used
throughout the domain.

p-plane approximation: f1s set to vary linearly in space.

The advantage of the beta plane approximation over more accurate
formulations is that it does not contribute nonlinear terms to the dynamical
equations; such terms make the equations harder to solve.

Equatorial [-plane approximation:

cosp = 1, f=f,+p.=2Qsing+
sing = y/a. AN A .

JfrapBy|l and B=2Q/=23x10""" m's"! N

Very small near equator

2Qcos @
V.

(7
e,
e
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Shallow-Water Equation on an Equatorial 3-Plane

Linearized shallow-water equations

du' /ot — Byv’ = —9d' ox

v jar+ By’ = —aday

o' /3t + gh, (3u'/3x + 9/ /3y) = 0

Assume wave-form solutions

u’ & ()
v | =| PO |exp[ilkx —vD)]
@ $ )

\ 4

—ivi — Byt = —ikd

—ivl + Byl = —3d 3y
—ivd 4 gh. (ki + 35/8y) = 0

boundary condition (v=0 at y= « ) can be satisfied.

82 v Lk
(et

2,2
dy &he v £he
Dispersion relationship Wial waves \l/

The index n corresponds to
the number of nodes in the

meridional velocity

profile in the domain |y| < «.

e
2
ﬂ“iﬁe (_EJ@—EE-I- 1;! ):En-l-l; n=012. ..
v ERe

o B (—Eﬁ—fb’z-l-
Ji; Vv

pe )
2R

=2n+1; n=0172...

This cubic dispersion equation permit three groups of

equatorially trapped waves:

!

(1) Eastward-moving gravity waves
(2) Westward-moving gravity waves
(3) Westward-moving Rossby waves

) N=g .
M=1
.Flnsahy
\L Only if this constant equal to an odd integer that the -1 i n=0 i

. 1R
€125 icw’HF = (@n+1)
g

C3=—ff [Ie2+ rﬁ (2n-1) :I

g

Only these waves that satisfy the condition

that the wave amplitudes decay far
from the equator (where the beta-plane
approximation becomes invalid.)
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Equatorial Waveguide

Linearized shallow-water equations

du' /9t — By’ = —3adox
* Wave-like solutions can result from this

equation if this coefficient has a positive
O’ /3t + ghe (9u'/3x + 90" /dy) =0 value.

v’ jar+ By’ = —3ddy

Assume wave-form solutions

* When y increases (i.e., away from the

w’\  [E0)
( s ) = [ ; '%?) } expi (ke — v¥)) equator), this coefficient becomes negative
(due to the Fy? term) and the wave-like
—ivii — Byd = —ikD solution becomes an exponential solution

v 4 it = — 3 iy (1.e., the wave solution disappears).

—ivd + gh, (ki + 35/3y) = 0 * Equatorial waves are trapped in the tropics.
l * This waveguide effect 1s due entirely to the
2 { ( 2 Eﬁ) ] ﬁ%/] . variation of Coriolis parameter with
iyt [N\ ke v ghe | latitude.
| )
| 2
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Three Groups of Equatorial Waves
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Equatorial Waves with n=1, 2, ..

(Eastward/Westward Gravity Waves; Rossby Waves)

1* w/i2fc)"®

14

examples
Eastward Gravity Wave - Westward Gravity Wave Westward Rossby Wave
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strongest winds.at the equator
|-—————1 unit length

Fig. 4. Pressure and velocity distributions of
eigensolutions for n=1

meridional winds (V) Change Sign once (n=1) a: Eastward propagating inertio-gravity wave
(from Matsuno 1966) b: Westward propagating inertio-gravity wave

c: Rossby wave,
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agpemmtte s

n=1 < - n=

e
- s —————— By

---------- ﬁ-'.‘___,_f_—:'-‘--.,.d 1

Symmetric in pressure
w.r.t. the equator

Anti-symmetric in pressure

B . B
g AAEIS e . mmmmm e m———
. . -z T
‘-"" e
B o - S 9 - .

i ,..-"_ — ™ - W ",
- ..': ‘--“\--.. e ':..--"V AT
¢ ";L‘I.""“‘ T ’7' - | __— Counter-clockwise vortex at the equator
T R W without a counterpart in the pressure fields
. e TL_ ~T x;. \ ¢ = due to sign change of Coriolis parameter
| 1 [ LR A
(from Matsuno 1966) B

|———— unit length
Fig. 4. TPressure and velocity distributions of
eigensolutions for n=1
a: Eastward propagating inertio-gravity wave
b: Westward propagating inertio-gravity wave Fig. 5. Same as Fig. 4 but for n=2.
c: Rosshy wave,
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Equatorial Waves with n=0
(Mixed Rossby-Gravity Waves)

— »

: N ] R \ . \
’l - \ /-_.""0
asna\uie \
| ©F, 7= b \
A \ / \ .
I N9 T l = \ . e
- . Equato
Fig. 7. Rossby type wave (n=0 k=1.0). 1L wiizgel’ . . . .
I 2 14 . - - - - . .
L 4
I-
(from Matsuno 1966) J b) l . -
_____ - JU————— — N
: be \ \ \\i]l

=3 -2 -l 0 i 2 3 :’ \
'\

The wave solution with n=0 is special V\ \.\'.‘_':_ _/ /"
. ) ti ~~~~ -~ -..:: ''''' : == .“,'
=>» Only two solutions exist ‘ L TomerTe oy
- - - - - 3
=>» Which behaves like a Rossby wave for large negative ’ ) : . .

k but behaves like a gravity wave for large positive k. Fig. 6. Pressure and velocity distributions of

eigensolutions for #=0 and k=0.5
s a: Eastward moving inertio-gravity wave
Waves”. b: Westward moving inertio-gravity wave.

=>» This group of waves is called “mixed Rossby-Gravity



Mixed Rossby-Gravity Waves

Equator

Flp. 11.13 Plan vigw of horizontal wlocity and height periurbations azaociated ieith an equatorial
Roeshy—gravity warve, (Adapted from Matoano, 1966.)
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Equatorial Waves with “n=-1"
(Equatorial Kelvin Waves)

b w/fizfel"®

- -

- ]Z’
. oo «Equator

o - . -

wieszm”"
2 3

Fig. 8. Pressure and velocity distributions of
eigensolution for n=—1 and k=0.5.

(from Matsuno 1966) This wave behaves like as the Kelvin wave.,

= The equatorially trapped Kelvin wave satisfies the dispersion relationship of the
equatorial beta-plane with n=-1.

» The solution is obtained by putting v (X, y)= 0 =» no meridional wind component

= The solution of this type behaves like as a pure gravity wave in the x-direction, while in
the y-direction the geostrophic relation holds between zonal velocity and meridional
pressure gradient.




Equatorial Kelvin Waves

Coastal Kelvin Wave  Equatorial Kelvin Wave

rErE

Atthecoast y = 0 18 v = O:

Y = |2¢/8| 1/2-—>e-decaying width

for a phase speed ¢ = 30ms-1

gives Y, = 1600 km.
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Aug. 1967: Canton Island,
with permission.]

E). Isopleths are at 1

86),

1°N/104°

~') at equatorial stations (Jan. 1953

1976-Apr. 1985: Singapore,

Jan.

]

°8/73°E;

Easterly and westerly winds alternate every other years

(approximately) in the lower to middle parts of the tropical stratosphere.

(in Stratosphere)

height section of monthly mean zonal winds (ms

Dec. 1975: Gan/Maldive Islands,

g. 8.1. Time

Fi
Sept. 1967

the alternating downward propagating westerly (W) and easterly (E) regimes. [From Naujokat (19

L]

Quai-Biennial Oscillation (QBO)

O Quasi-Biennial Oscillation



