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Lecture 2: Basic Conservation Laws Conservation Law of Momentum

Type of motion Horzontal scale {m)
Maolecular mean free path il
Minute turbubent cddies 102 - !
:im.-lr.\-:hn‘-\ w-r-1 D” Uﬂ'
Fowinte 0o 102 = 5 F Newton’s 2" Law
Tornadoss 102 Df of Momentum
Cumulonimbus clouds 10¢
Fronts, squall lines 10t - 0P .
E‘\"r"”;'_“‘“\ e :: U, = absolute velocity viewed in an inertial system
IF‘;I.H:\: .|I|\\\\.A.‘m-: 107 DU
- ﬁ = rate of change of Ua following the motion in an inertial system
» Conservation of Momentum + The conservation law for momentum (Newton’s second law of
o Conservation of Mass motion) relates the rate of change of the absolute momentum

following the motion in an inertial reference frame to the sum
of the forces acting on the fluid.
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» Conservation of Energy
* Scaling Analysis

Apply the Law to a Rotating Coordinate Total Derivative in a Rotating Coordinate

» For most applications in meteorology it is desirable to refer the A=id +j4, +K A4

. . X (in an inertial coordinate)
motion to a reference frame rotating with the earth. z

A=iA x+ i A ¥ =+ k A; (in a coordinate with an angular velocity Q)

» Transformation of the momentum equation to a rotating
coordinate system requires a relationship between the total D A DA DA DA
[T — o Ty z

o ¥ N z

derivative of a vector in an inertial reference frame and the Dr LY Dr +k Dr
corresponding total derivative in a rotating system. ' ' ' '
DA, DA, DA:  Dgi Dyj Dk
=i +j +k + L4+ Ay + A
T Di Dr Dr Dr Dr Dt
Dﬁ l]{.{ D[ \§ J \§ J
— e -y — T T
D! Dr Change of vector A in Change of the rotating coordinate
) the rotating coordinate view from the inertial coordinate
The acceleration following the The acceleration following the DA DA
motion in an inertial coordinate motion in a rotating coordinate — D =—+QxA
! t
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Newton’s 2" Law in a Rotating Frame

fo Uﬂ _ Z F
Dt
D,U, DU, +QxU covert acceleration from an inertial
- Jqg — .
using |: Dy Dy to a rotating frames

U, = U + 8 X r «— apsolute velocity of an object on the rotating
earth is equal to its velocity relative to the earth
plus the velocity due to the rotation of the earth

p,U, D .
= —(U -
Dr D’(l+ﬂxr}+9x(l+ﬂxn
[Here 2 x (R x1r) =2 x (2 xR) = —Q’R |
DU, DU ,
— = —— 422 xU-Q°R
=> Di Di + >

T . ESS227
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Momentum Conservation in a Rotating Frame

on an inertial coordinate

D, U
B 2= 5 F = pressure gradient force + true gravity + viscous force
I
1
= e P + g* +F,
p
Du[Ta DU

= — 4+2xU- QR

Because
Dt D1

DU 1 .
> ?+29xu_nﬂn = —;Vp+g+Fr
f

Momentum Equation on a Spherical Coordinate

U=iu+jv+ kw
D
u = Dx/Dt=acos¢p DijDt =rcos¢ ==

-_:.-_ Equator

v = Dy/Dt=a D¢ /Dt =r—,

w= ESS227
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DU 1 on a rotating coordinate
S —=-22xU--V F,
Dy X P p+eE+
Here, g = apparent gravity = ( g* + Q?R) H S Niva
Rate of Change of U
DU iDn ¥ .Dv N L'Dw + Dj + Dk
—=1— S {— 4+t v— 4 w—
Dr i YD TR D D D
Di di T L.
=1 = (j sin¢gp — kcos ¢)

—_— = —
Di dx acos ¢
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Coriolis Force (for n-s motion)

Suppose that an object of unit mass, initially at latitude ¢ moving zonally at speed u,
relative to the surface of the earth, is displaced in latitude or in altitude by an
impulsive force. As the object is displaced it will conserve its angular momentum in
the absence of a torque in the east-west direction. Because the distance R to the
axis of rotation changes for a displacement in latitude or altitude, the absolute
angular velocity ( £2 + 1/ R ) must change if the object is to conserve its absolute
angular momentum. Here ¢ is the angular speed of rotation of the earth.
Because ¢} is constant, the relative zonal velocity must change. Thus, the object
behaves as though a zonally directed deflection force were acting on it.

it
»

u 2 u+ du 2
Qb= IRF=|+ (R+8R)"
( R) ( H-}—x}R)

> Su=-206RK - iMf (neglecting higher-orders)
R
Ry L @ using &R = —singdy
%%, |
@ \ i Duy _ 22 sing + ﬂI.:nm»}ﬂ =2Qusing + — tan g
,;‘:"p & \ > (Hr ) (- ’ T e T a
FgaR ad \ : — — .
7 - and for a vertical displacement in which 88 = + cos gz
. @
. oo L W P A Y e e
%\—'_ . m, (E] - [_Séu\r-(u . “} Dr = 280w cos P
24y P

Momentum Eq. on Spherical Coordinate

DU 29 x U lv +g+F
- = wU—— .
2 SV te
Du _ & v tan ¢ wwy fi rr31;|t1¢; 1] . (,’)u- u? + ‘.‘2) )
° Dt _(Dr a + a _)'+(D: + a + a i+ D a k
i j k

e 22 x U=-20210 Ccos ¢ sin ¢

" U w

= —(2Quwcos¢ — 2Qusing) i —2Qusing j+ 2Qu cos ¢ k

dp dp dap
dx dy

eg=—¢k

oF, =iF +jF,+kF. “ ESs227
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Momentum Eq. on Spherical Coordinate

Du wv tan nw 1 ap .
Duj wvtang + —|= ——_—; +2Qusind — 2Quwcosp + F,
Dt a a pox
“
Dy | wtan ¢ + v 1ap 2Qusing + F
— f——— 4+ —|=——— —=2Qusin ry
D a a pay !

2 2 .
Y| w +v 1Lap
- == —g+2Q F,
Dt a p oz y+28hucos g+ Fre

|/

Rate of change of
the spherical coordinate n Ess227
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Scaling Analysis

*  Scale analysis, or scaling, is a convenient technique for
estimating the magnitudes of various terms in the governing
equations for a particular type of motion.

* Inscaling, typical expected values of the following quantities
are specified:

(1) magnitudes of the field variables;
(2) amplitudes of fluctuations in the field variables;

(3) the characteristic length, depth, and time scales on which
these fluctuations occur.

*  These typical values are then used to compare the
magnitudes of various terms in the governing equations.
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Scales of Atmospheric Motions

Soconds | Minutes | Hours
Type of motion Horizontal scale (m I 6‘;;,,

LIFE SPAN

Molecular mean free path 107

Minute wrbulent eddies 1072 - 107!
Small eddies 1wt
Dust devils 1-10
Gusts 10— 107
Tomadoes 17
Cumulonimbus clouds 10°
Fronts, squall lines 104~ 10°
Hurricanes 10°

Synoptic cyclones 10°
\  waves 7 ESS227
Planctary waves 10 H Prof. Jin-Yi Yu

Scaling for Synoptic-Scale Motion

* The complete set of the momentum equations describe all
scales of atmospheric motions.

= We need to simplify the equation for synoptic-scale motions.

= We need to use the following characteristic scales of the field
variables for mid-latitude synoptic systems:

U~ 10ms~!
1

horizontal velocity scale

W~1lecms™ vertical velocity scale
L~ 10°m length scale [~1/(27) wavelength]
H~ 10*m depth scale
§P/p~10°m’ s=2  horizontal pressure fluctuation scale
LIU~10%s time scale
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Pressure Gradients

* Pressure Gradients
— The pressure gradient force initiates movement of atmospheric
mass, wind, from areas of higher to areas of lower pressure

* Horizontal Pressure Gradients
— Typically only small gradients exist across large spatial scales
(1mb/100km)
— Smaller scale weather features, such as hurricanes and tornadoes,
display larger pressure gradients across small areas (1mb/6km)

* Vertical Pressure Gradients
— Average vertical pressure gradients are usually greater than
extreme examples of horizontal pressure gradients as pressure
always decreases with altitude (1mb/10m)
H ESS227
Prof. Jin-Yi Yu

Scaling Results for the Horizontal Momentum Equations

A B C D E F G
x—Eq. % —2Qusing | +2Qwcosgp 4l e ) —%—g'_\e +Frx
v—Eq. %—‘{’ +2Qusing +ie +“2i+‘¢ = —% %Jtl +Fry
Scales vt /L Joll ToW t"‘:" % % ‘HTL
ms=2) 10-4 1073 10— 10-8 10-3 10-3 10-12
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Geostrophic Approximation, Balance, Wind

‘Scaling for mid-latitude synoptic-scale motion

1 ap i 1dp
—fr R ——— U ———

p ox ’ p oy

) 1
Ve=k x ;vﬁ Geostrophic wind

* The fact that the horizontal flow is in approximate geostrophic balance is
helpful for diagnostic analysis.
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Weather Prediction

D Lap
NPT
Dv 1ap )
D =/ ‘::-—f(*—"u)

* In order to obtain prediction equations, it is necessary to retain
the acceleration term in the momentum equations.

» The geostrophic balance make the weather prognosis
(prediction) difficult because acceleration is given by the small
difference between two large terms.

* A small error in measurement of either velocity or pressure
gradient will lead to very large errors in estimating the

acceleration. ﬂ ESS227
Prof. Jin-Yi Yu

Rossby Number

Ry = U/ fpl)

Rossby number is a non-dimensional measure of the
magnitude of the acceleration compared to the Coriolis force:

The smaller the Rossby number, the better the geostrophic

balance can be used N
(UL o)

Rossby number measure the relative importnace of the inertial
term and the Coriolis term.

This number is about O(0.1) for Synoptic weather and about

O(1) for ocean. n ESs27
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Scaling Analysis for Vertical Momentum Eq.

z-Fq. Dw/Dr —2Qucosp —wi+vifa =—p Yapjoz|| -2 +F;;
Scales  UW/L fol va Py /(pH) 2 vWH2
ms=2  10-7 10-3 10-3 10 10 | 10-13

Dw u2+ v2 lap
=——-L_g409 F.
Di a p oz g+28lucosg+

l Hydrostatic Balance

1 dpo

=-g

po dz
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Hydrostatic Balance

z-LEq. Dw/Dt —2Q2ucosg¢ —(u® 407 Va —p ! pjoz  —g +F; -
Scales  UW/L il U2 /a Py/(pH) g v WH™2
m &2 10-7 10-3 10-3 10 10 10-13

* The acceleration term is several orders smaller than the
hydrostatic balance terms.

=>» Therefore, for synoptic scale motions, vertical
accelerations are negligible and the vertical velocity
cannot be determined from the vertical momentum

Vertical Motions

» For synoptic-scale motions, the vertical velocity component is

typically of the order of a few centimeters per second. Routine
meteorological soundings, however, only give the wind speed
to an accuracy of about a meter per second.

Thus, in general the vertical velocity is not measured directly
but must be inferred from the fields that are measured directly.

Two commonly used methods for inferring the vertical motion
field are (1) the kinematic method, based on the equation of
continuity, and (2) the adiabatic method, based on the

thermodynamic energy equation.
“ ESS227
Prof. Jin-Yi Yu

equation.
“ ESS227
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Primitive Equations
du o .
d_ - fv=-— - (1) zonal momentum equation
i cx
dv o . )
d_ + ‘fu =— (2) meridional momentum equation
r oy
d_p = — 00 (3) hydrostatic equation
dz P8
éu ov dom
A v = 0 (4) continuity equation
cx oy op
dT
P F - CZd—"? = Q (5) thermodynamic energy equation
p= )@lf T (6) equation of state n pssam
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The Kinematic Method

We can integrate the continuity equation in the vertical to get the vertical
velocity.

i oV ey
(202) =
dx av /.. ap
P fou v
> w(p)=w(p)— — 4+ — | dp
Ps dx ").1. p

We use the information of horizontal divergence to infer the vertical
velocity. However, for midlatitude weather, the horizontal divergence is
due primarily to the small departures of the wind from geostrophic balance.
A 10% error in evaluating one of the wind components can easily cause the
estimated divergence to be in error by 100%.

For this reason, the continuity equation method is not recommended for

estimating the vertical motion field from observed horizontal winds.
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The Adiabatic Method

» The adiabatic method is not so sensitive to errors in the
measured horizontal velocities, is based on the thermodynamic
energy equation.

oT ol aT ) J
+u +v — Spw = —

g1 (2T 0T 0T
D )= . — H— U —
P\ ot dx dy
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Conservation of Mass

* The mathematical relationship that
expresses conservation of mass for a fluid
is called the continuity equation.

(mass divergence form)

Hp
— 4+ Ve(pl) =0
df

)
IQ_FV.[I:D

p Di (velocity divergence form)
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Mass Divergence Form (Eulerian View)

i
| | for a fixed control volume |
HTRT]
- == N = oo

‘ —_—

* Net rate of mass inflow through the sides = Rate of mass accumulation within the volume

* Net flow through the dve 5 z surface)

u b ax’) . a ax N d )
pu——i(pu)— | dybz— | pu + —pu)— | dvdz = ——(pu)dxdysz
ix 2] ix 25| ax ’
o d d

« Net flow from all three directions = — [ {pu) + —(pr) 4 -lmr-l] dxdydz
. dx i [k :
di .

* Rate of mass accumulatio m dxdyvéz
ar

. iy
*  Mass conservation (| 2/ , ¢, (pU)y =0 - ESS227
df
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Velocity Divergence Form (Lagragian View)

A o=ty — g = Iy + dxy/ D — Dxfin

™" — " Su= D(3x) /Dt

U8 Byt

» Following a control volume of a fixed mass (5 M), the amount of mass is

LD Lo YD 4D
O s T o T e T ol
due = Déx) [ Dn
1D 1D 1 D 1 D “ )
o ——(8Vy= ——(8x) 4+ ——(5y) 4+ ——(iz) and Sv = IM&vy/ I
sV D dx Di Sv i bz Dt .
0 dw = Idz) D,
O 1 I HITS v e
lim —_——(f§l )| =—F = — =Vl
sedyses0 | SV Dr dx - dy + iz
1 Dp

——t+TVell=10 ESS227
o I Prof. Jin-Yi Yu
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Scaling Analysis of Continuity Eq.

1 [fap' e
( ! +l'.v,r-.-')+’;ﬁ+v-l‘ ~0
oo oz

A B C

where o’ designates the local deviation of density frmq its horizontally averaged
value, pg (z). For synoptic scale motions p'/ pg ~ 107-

1 fap" s " L 7
TermA=> —(:_r+1'.v,-- ) 2 om0
fLi) L

o L

TermB 9 —— e A 107%! (because |Il,|'1n/u": ~H")
M oz
s e dv o dw dn @ Y e e W
Term C 2 VII=I+T|'+T= .|\+.,)"i"1_f""'|'" " and >~ <10 5!
du KTy d
— T+T+-,_.+”'-_.'|"!-'ur=tl or Ve (pU)=10) ESS227
ax oy oz qs Prof. Jin-Yi Yu

Meaning of the Scaled Continuity Eq.

)J
1 [/ . i scaled V. (,-’_'Jul]} -0

« Velocity divergence vanishes
(V+U=0) inan
incompressible fluid.

« For purely horizontal flow, the
atmosphere behaves as though
it were an incompressible fluid.
* However, when there is
vertical motion the
compressibility associated with
the height dependence of p0
must be taken into account.
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The First Law of Thermodynamics

* This law states that (1) heat is a form of energy
that (2) its conversion into other forms of energy
is such that total energy is conserved.

* The change in the internal energy of a system is
equal to the heat added to the system minus the
work down by the system:

AU=Q-W

change in internal energy

Heat added to th t
(related to temperature) eat added to the system  Work done by the system
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CYLINDER (from Atmospheric Sciences: An Intro. Survey)
A\

\

PISTON

» Therefore, when heat is added
to a gas, there will be some
combination of an expansion
of the gas (i.e. the work) and
an increase in its temperature
(i.e. the increase in internal
energy):

PRESSURE

VOLUME ———=

Heat added to the gas = work done by the gas + temp. increase of the gas
AH = p Aa + C, AT

volume change of the gas specific heat at constant volume n Essa21
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Heat and Temperature

» Heat and temperature are both related to the internal
kinetic energy of air molecules, and therefore can be

related to each other in the following way:

Q = c*m*AT
A
Heat added Mass Temperature changed

Specific heat = the amount of heat per unit mass required
to raise the temperature by one degree Celsius

ESS227
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Specific Heat

TABLE 2.1 The Specific Heat of a Substance is the
Amount of Heat Required to Increase
the Temperature of One Gram of the
Substance 1° C

Specific Heat

Substance (calig/i°C) (Jikg/°C)
Water 1.0 4186
Ice 0.50 2093
Air 0.24 1005
Sand 0.19 795
(from Meteorology: Understanding the Atmosphere) ﬂ Ess227
Prof. Jin-Yi Yu

Apply the Energy Conservation to a Control Volume

» The first law of thermodynamics is usually derived by considering a
system in thermodynamic equilibrium, that is, a system that is
initially at rest and after exchanging heat with its surroundings and
doing work on the surroundings is again at rest.

* A Lagrangian control volume consisting of a specified mass of fluid
may be regarded as a thermodynamic system. However, unless the
fluid is at rest, it will not be in thermodynamic equilibrium.
Nevertheless, the first law of thermodynamics still applies.

* The thermodynamic energy of the control volume is considered to
consist of the sum of the internal energy (due to the kinetic energy
of the individual molecules) and the kinetic energy due to the
macroscopic motion of the fluid. The rate of change of this total
thermodynamic energy is equal to the rate of diabatic heating plus
the rate at which work is done on the fluid parcel by external forces.

ESS227
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Total Thermodynamic Energy

 If we let e designate the internal energy per
unit mass, then the total thermodynamic
energy contained in a Lagrangian fluid element
of density p and volume oV is

ple + (1/2)U « U] &1
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External Forces

» The external forces that act on a fluid element may be
divided into surface forces, such as pressure and
viscosity, and body forces, such as gravity or the
Coriolis force.

» However, because the Coriolis force is

perpendicular to the velocity vector, it can do
no work.

ESS227
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Work done by Pressure

The rate at which the surrounding fluid does
work on the element due to the pressure
force on the two boundary surfaces in the y,
z plane is given by:

tpuly == = l-pulg

y J . (puygbyéz— A pu)gdriz

By
Bx A ]
(pu)g = (pu)4+ I:_—{ pu) | dx 4+ ...
. ax Ja

So the net rate at which the pressure i
force does work due to the x component = [ i) — (pr)gléidz = — [':_-I pu '] oV
of motion is o 4

Hence, the total rate at which work is done ) o
by the pressure force is sSimply =—————— —Ve | pl- yo l
ESS227
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Thermodynamic Eq. for a Control Volume

D 1
}—) [;J (('—}— _—)l'l l') rﬂ'] = —Ve(pl)dl" + pg e Usl 4 pJéV
! y

/

Work done by
gravity force

Work done by
pressure force

J is the rate of heating per unit mass
due to radiation, conduction, and
latent heat release.

(effects of molecular viscosity are neglected) ﬂ ESS227
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Final Form of the Thermodynamic Eq.

DT D
+ p—= J

Dy D

[

+ After many derivations, this is the usual form of the
thermodynamic energy equation.

* The second term on the left, representing the rate of
working by the fluid system (per unit mass), represents a
conversion between thermal and mechanical energy.

 This conversion process enables the solar heat energy to
drive the motions of the atmosphere.
ﬂ Ess227
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Entropy Form of Energy Eq.

DT Doy
Cp— pP— = g
Di Di « The rate of change of entropy (s) per unit
mass following the motion for a
Pa=RT thermodynamically reversible process.
Cp=Cv+R * Areversible process isone in wh_ich a
system changes its thermodynamic state
and then returns to the original state without
. DT f)p _ changing its surroundings.
py— —— =
p
D D
Divided by T
DinT R Dnp J Dy
O y— — === —
P Di Di T Dt
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Potential Temperature (0)

» For an ideal gas undergoing an adiabatic process (i.e., a reversible
process in which no heat is exchanged with the surroundings; J=0),
the first law of thermodynamics can be written in differential form as:

cpDInT — RDInp=D(cpinT — RInp)=0

ki<, 5|, pmé _J _ Ds
' YTDi T T Dn

24 =T(ps/p)

Thus, every air parcel has a unique value of potential temperature, and this
value is conserved for dry adiabatic motion.

Because synoptic scale motions are approximately adiabatic outside regions
of active precipitation, 0 is a quasi-conserved quantity for such motions.
Thus, for reversible processes, fractional potential temperature changes are
indeed proportional to entropy changes.

A parcel that conserves entropy following the motion must move along an

isentropic (constant 0) surface. ESS227
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Static Stability

If potential temperature is a function of height. the atmospheric lapse rate. I’ =
—dT/dz, will differ from the adiabatic lapse rate and

T ad
—T = th' - r
& oz

If I < I'd so that 8 increases with height, an air parcel that undergoes an
adiabatic displacement from its equilibrium level will be positively buoyant when
displaced downward and negatively buoyant when displaced upward so that it
will tend to return to its equilibrium level and the atmosphere is said to be
statically stable or stably stratified.

dboldz > O

dbo/dz =
doldz < 0

statically stable,
statically neutral,
statically unstable.

ESS227
Prof. Jin-Yi Yu

Scaling of the Thermodynamic Eq.

I dT a:_f‘r_l J

P dt
— U iDL vy L
Pt ct ez
. dT ep E
— Pt J4 c,:g!";+a[a’_- Vol we
J_T L \
d Cp Small terms; neglected after scaling
—_— T-L 2, yvrw&d
et C, C, €z
! : = -aT/ az = lapse rate
—_— Ly yro LT ry=-g/c, = dry lapse rate
a  C, C, &2/
cl J .
— | — = ==V VT-w(I,-T)
ct [ v H ESS227
. Prof. Jin-Yi Yu
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Pressure Gradients

¢ Pressure Gradients

— The pressure gradient force initiates movement of atmospheric
mass, wind, from areas of higher to areas of lower pressure

» Horizontal Pressure Gradients
— Typically only small gradients exist across large spatial scales
(1mb/100km)
— Smaller scale weather features, such as hurricanes and tornadoes,
display larger pressure gradients across small areas (1mb/6km)

» Vertical Pressure Gradients
— Average vertical pressure gradients are usually greater than
extreme examples of horizontal pressure gradients as pressure
always decreases with altitude (1mb/10m)
- ESS227
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Temperature Tendency Equation

C;_T = 4_ V-VT-w(I -T')
cf C “
p
TermA TermB Term C

* Term A: Diabatic Heating
* Term B: Horizontal Advection
* Term C: Adiabatic Effects

(heating/cooling due to vertical motion in a stable/unstable atmosphere)
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Primitive Equations

* The scaling analyses results in a set of approximate
equations that describe the conservation of
momentum, mass, and energy for the atmosphere.

*» These sets of equations are called the primitive
equations, which are very close to the original
equations are used for numerical weather prediction.

* The primitive equations does not describe the moist
process and are for a dry atmosphere.
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Primitive Equations

— = === (1) zonal momentum equation
di ox
dv 0P . .
—+ fu=— — (2) meridional momentum equation
dt &)
d_p =—pg (3) hydrostatic equation
ou v dw
ot = 0 (4) continuity equation
ox oy op
dT

P
——a——=( (5) thermodynamic energy equation

Pt dt
p= ,CR T (6) equation of state ﬂ sz
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