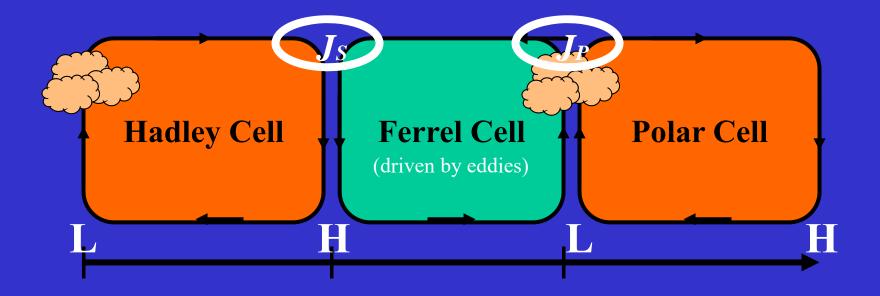
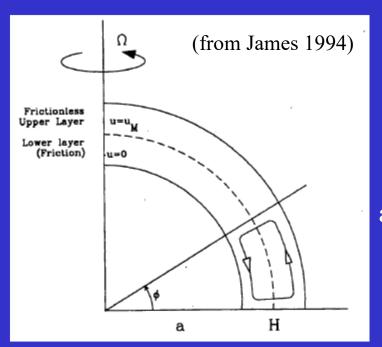
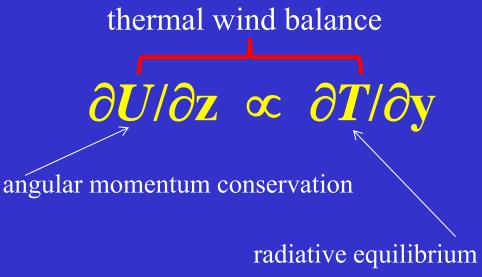
Lecture 11: Atmospheric General Circulation



- ☐ Hadley Cell a thermal-driven circulation
- ☐ Farrell Cell an eddy-driven circulation

The Held-Hou Model (1980) for Hadley Circulation

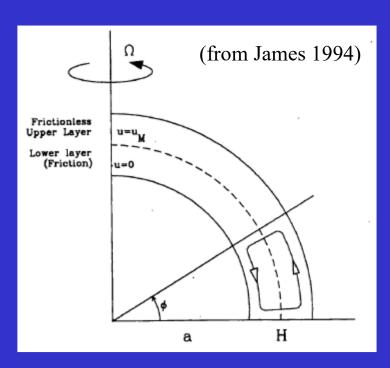




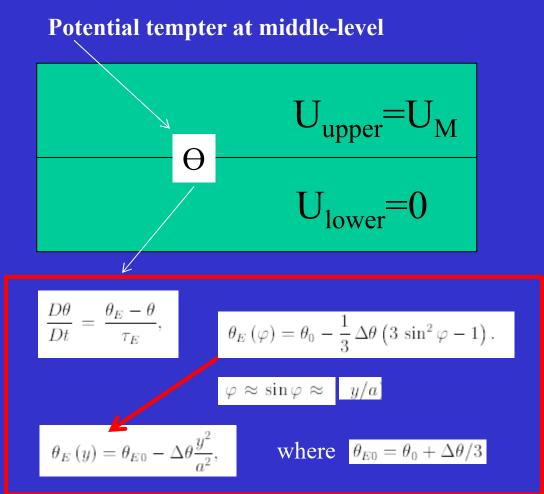
- The Held-Hou model is a two-level model on the sphere with equatorward flow at the surface and poleward flow at height H.
- The model uses angular momentum conservation and thermal wind balance to determine the width and strength of the Hadley circulation.

 ESS228
 Prof. Jin-Vi Vu

Held and Hou Model: Radiative Forcing

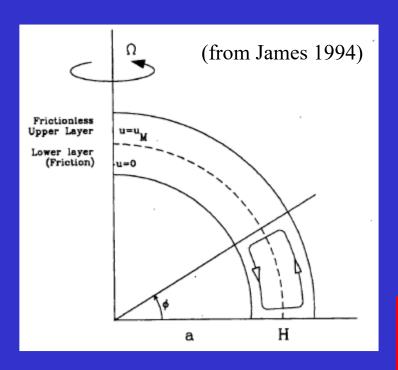


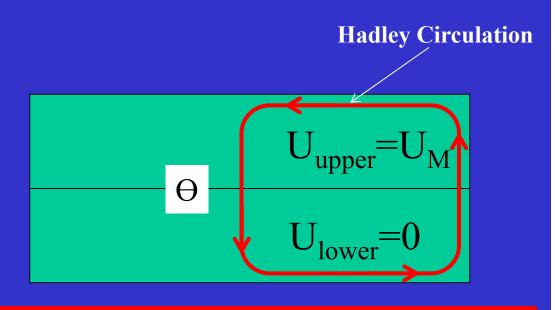
 $\Theta_{E:}$ global mean radiative equilibrium temperature $\Delta\Theta$: pole-to-equator temperature deference

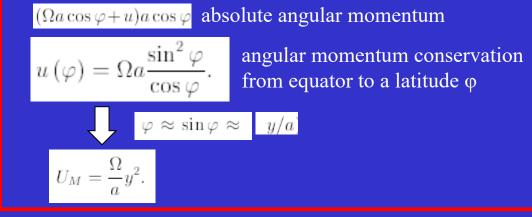


 Radiative processes are represented in the model using a Newtonian cooling formulation.

Held and Hou Model: **Dynamics**





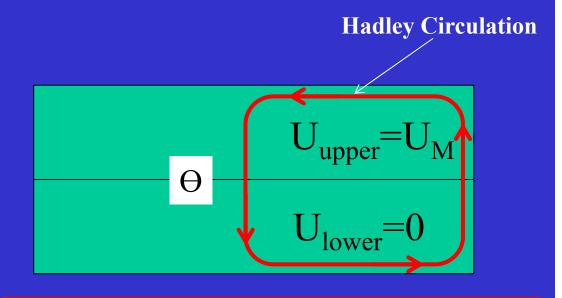


■ The zonal-mean zonal wind (U) is determined by the conservation of absolute angular momentum.

Held and Hou Model: Thermal Wind Balance



Θ_{M:} potential temperature derived based on conservation of angular momentum ►



$$\frac{\partial u}{\partial z} = \frac{U_M}{H} = \frac{\Omega}{aH} y^2.$$

$$\frac{\partial \theta}{\partial y} = -\frac{2\Omega^2 \theta_0}{a^2 aH} y^3.$$

$$\theta_M = \theta_{M0} - \frac{\Omega^2 \theta_0}{2a^2 gH} y^4,$$

based on thermal wind balance

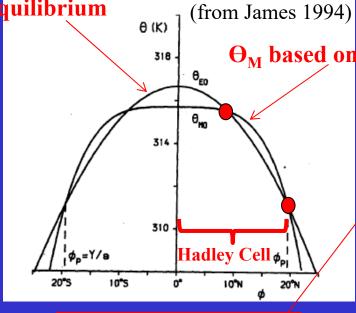
$$\frac{\partial \mathbf{V}_g}{\partial \ln p} = -\frac{R}{f} \mathbf{k} \times \mathbf{\nabla}_p T$$

• The potential temperature structure at the middle level of the model is calculated from thermal wind balance.

Held and Hou Model: Hadley Circulation

O_E based on radiative equilibrium

$$\theta_E(y) = \theta_{E0} - \Delta \theta \frac{y^2}{a^2},$$



O_M based on momentum conservation

$$\theta_M = \theta_{M0} - \frac{\Omega^2 \theta_0}{2a^2 g H} y^4,$$

$$\frac{D\theta}{Dt} = \frac{\theta_E - \theta}{\tau_E},$$

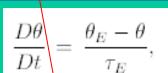
- The steady state solution to the above equation can be found from the cross points of Θ_E and $\Theta_{M.}$
- Zone 1 (Equator to the first crossing point): $\Theta_E > \Theta_M$ radiative heating
- Zone 2 (first to second crossing point): $\Theta_E \le \Theta_M$ → radiative cooling
- Hadley cell is driven by radiative heating to move from equator to Y while conserving angular momentum.

Held and Hou Model: HC Width Y

O_E based on radiative equilibrium

$$\theta_E(y) = \theta_{E0} - \Delta \theta \frac{y^2}{a^2},$$

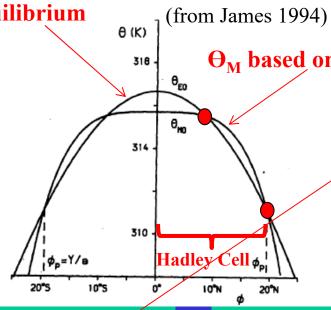
$$\theta_{E0} = \theta_0 + \Delta\theta/3$$



$$\int_{0}^{Y} \frac{D\theta}{Dt} dy = 0,$$

$$\int_{0}^{Y} \theta_{M} \, dy = \int_{0}^{Y} \theta_{E} \, dy.$$

$$\theta_{M0} - \frac{\Omega^2 \theta_0}{10a^2 gH} Y^4 = \theta_{E0} - \frac{\Delta \theta}{3a^2} Y^2.$$



Since the model assumes a steady state, there can be no net heating of an air parcel when it completes a circuit of the Hadley cell

O_M based on momentum conservation

$$\theta_M = \theta_{M0} - \frac{\Omega^2 \theta_0}{2a^2 gH} y^4,$$

Assume continuity of potential temperature at y = Y

$$\rightarrow \Theta_{E}(Y) = \Theta_{M}(Y)$$

$$\theta_{M0} - \frac{\Omega^2 \theta_0}{2a^2 gH} Y^4 = \theta_{E0} - \frac{\Delta \theta}{a^2} Y^2.$$

$$Y = \left(\frac{5\Delta\theta gH}{3\Omega^2\theta_0}\right)^{1/2}$$
, HC Width

$$\theta_{M0} = \theta_{E0} - \frac{5\Delta\theta^2 gH}{18a^2\Omega^2\theta_0}.$$

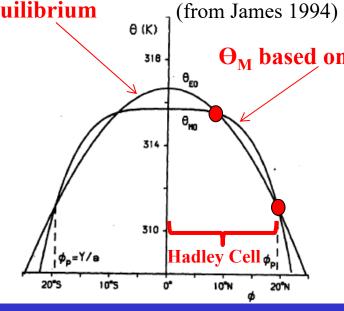
HC Strength

Held and Hou Model: Hadley Circulation

O_E based on radiative equilibrium

$$\theta_E(y) = \theta_{E0} - \Delta \theta \frac{y^2}{a^2},$$

$$\theta_{E0} = \theta_0 + \Delta\theta/3$$



 Θ_{M} based on momentum conservation

$$\theta_M = \theta_{M0} - \frac{\Omega^2 \theta_0}{2a^2 gH} y^4,$$

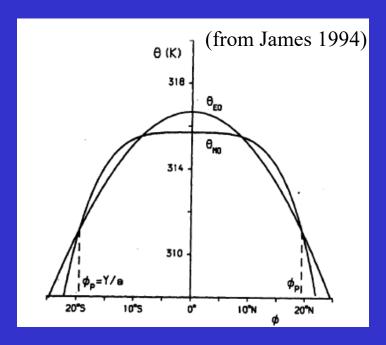
$$Y = \left(\frac{5\Delta\theta g H}{3\Omega^2\theta_0}\right)^{1/2},$$

$$\theta_{M0} = \theta_{E0} - \frac{5\Delta\theta^2 gH}{18a^2\Omega^2\theta_0}.$$

HC Width ← Come close to the observations (too narrow)

HC Strength← Too weak!

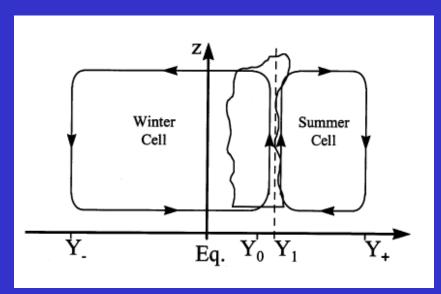
Factors Affect the Hadley Circulation Width

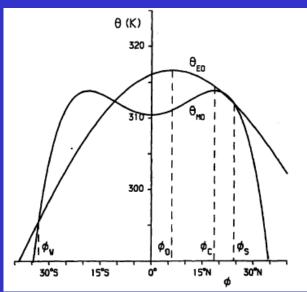


$$Y = \left(\frac{5\Delta\theta g H}{3\Omega^2\theta_0}\right)^{1/2},$$

- ☐ The Held-Hou model predicts that the width of the Hadley cell is inversely proportional to the planetary rotation rate.
- ☐ At low rotation rates the Hadley cells extend far poleward and account for most of the heat transport from equator to pole.
- ☐ At high rotation rates the Hadley cells are conned near the equator and baroclinic waves poleward of the Hadley circulations are responsible for a significant proportion of the heat transport.

Held and Hou Model: Asymmetric to Equator





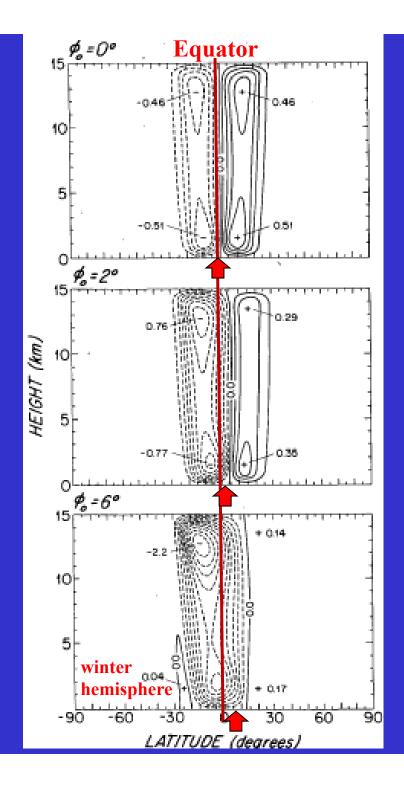
For maximum heating only 2-degree away from the equator, the winter cell is over three times as wide as the summer cell.

(from James 1994)

Off-Equatorial Heating

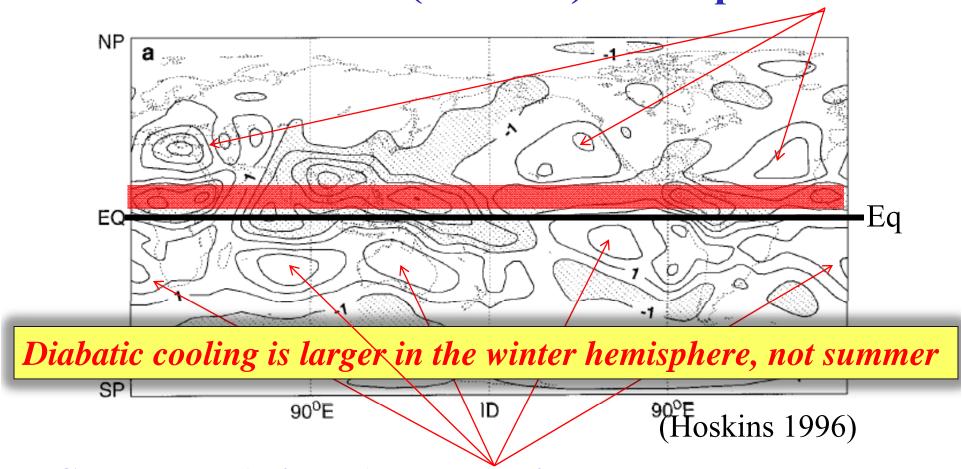
".. We find that moving peak heating even 2 degree off the equator leads to profound asymmetries in the Hadley circulation, with the winter cell amplifying greatly and the summer cell becoming negligible."

--- Lindzen and Hou (1988; JAS)



Vertical Velocity $\omega_{500\text{mb}}$ (June-August 1994)

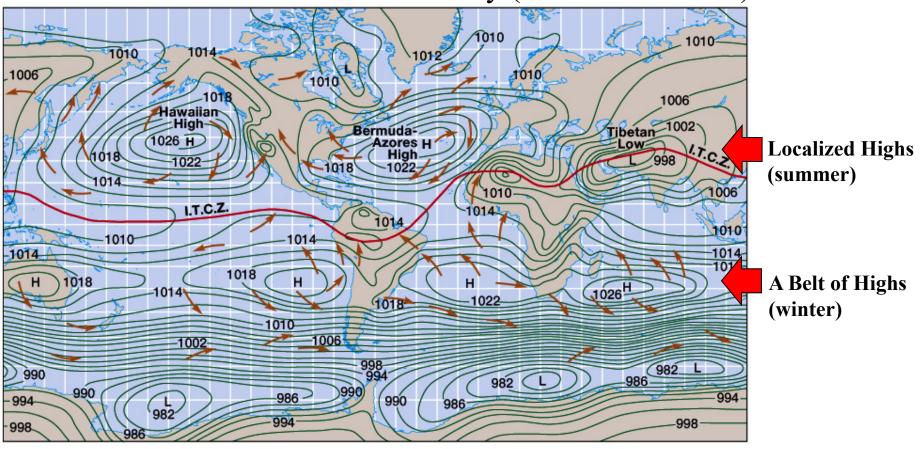
Northern (summer) subtropical descent



Southern (winter) subtropical descent

Subtropical Highs

July (northern summer)



- Winter subtropical highs can be explained by the Hadley circulation
- Summer subtropical highs has to be explained in the contect of planetary waves

Possible Mechanisms - Summer

The underlying mechanisms are still disputed:

- (1) Monsoon-desert mechanism (Rodwell and Hoskins 1996, 2001)
- (2) Local land-sea thermal contrast (Miyasaka and Nakamura 2005)
- (3) Diabatic amplification of cloud-reduced radiative cooling
- (4) Air-sea interaction

Monsoon-Desert Mechanism

(Rodwell and Hoskins 1996)

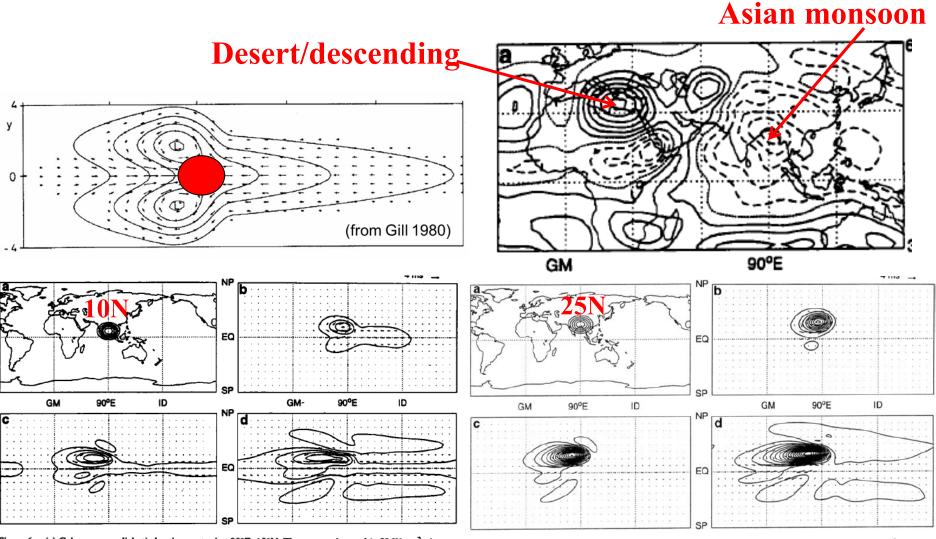


Figure 6. (a) Column-mean diabatic heating centred at 90°E, 10°N. The contour interval is 50 W m⁻²; the zero contour is not shown. (b), (c) and (d) show the corresponding perturbation surface pressure and 887 hPa horizontal winds for an integration linearized about a resting basic-state at (b) day 3, (c) day 7 and (d) day 11. The contour interval is 1 hPa.

Figure 7. (a) Column-mean diabatic heating centred at 90°E, 25°N. The contour interval is 50 W m⁻²; the zero contour is not shown. (b), (c) and (d) show the corresponding perturbation surface pressure and 887 hPa horizontal