Lecture 2: Basic Conservation Laws

Type of motion Horizontal scale (m)
Molecular mean free path 1077
Minute turbulent eddies 102 - 107!
Small eddies 0-t-1
Dust devils 1-10
Gusts 10-10?
Tormadoes 102
Cumulonimbus clouds 10°
Fronts, squall lines 10% - 10°
Hurricanes 10°
Synoptic cyclones 10°
Planetary waves 107

minutes hours -
LIFE SPAN

 (Conservation of Momentum
 (Conservation of Mass
* Conservation of Energy

e Scaling Analysis - Ess227



Conservation Law of Momentum

E F Newton’s 2"d Law

of Momentum

E-'f, U,

l_.n. = absolute velocity viewed in an inertial system
ﬂﬁ I-'T-I!I'

Dt

= rate of change of Ua following the motion in an inertial system

e The conservation law for momentum (Newton’s second law of
motion) relates the rate of change of the absolute momentum
following the motion 1n an inertial reference frame to the sum
of the forces acting on the fluid.
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Apply the Law to a Rotating Coordinate

« For most applications in meteorology it 1s desirable to refer the
motion to a reference frame rotating with the earth.

* Transformation of the momentum equation to a rotating
coordinate system requires a relationship between the total
derivative of a vector in an inertial reference frame and the
corresponding total derivative in a rotating system.

DU, DU
D D1 \
The acceleration following the The acceleration following the

motion in an inertial coordinate motion in a rotating coordinate
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Total Derivative in a Rotating Coordinate

A= if_fwf;, 4 jrff J:I - k'rffi (in an inertial coordinate)

A=1i4 ¥ + J4 v —+ k 4; (in a coordinate with an angular velocity Q)

DA ,D4" DA DAL

— i k'
Dy D + D + Dt
D Ay DA A D,i D D, Ic
= —'I—J 4 + k = - -fi‘_:f + ﬁ.] z
D Di D Dy Dr Dt
— I _J - I _J
Change of vector A in Change of the rotating coordinate
the rotating coordinate view from the inertial coordinate
D A DA
> - — 4+ R xA
D Dt
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Newton’s 2"d Law in a Rotating Frame

ﬂ[’l‘ U{J’
=¥
Dt
DaU. — DU, +QxU covert acceleration from an inertial
using Dt Dt ¢ to a rotating frames

U, = U+ & XX 1« gpsolute velocity of an object on the rotating
earth is equal to its velocity relative to the earth
plus the velocity due to the rotation of the earth

D”U“—DU Qxr)+2x(U+Qxr)
- D _E{+ XT)+x (U+Qxr
Here 2 x (2 x1r) =2 x(xR)=—-Q°R ]
DUH DU

:_+2ﬁxu—ﬂi’n

T TN

Coriolis force Centrifugal force
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Momentum Conservation in a Rotating Frame

on an inertial coordinate

D ) Uu ) . ]
= E F = pressure gradient force + true gravity + viscous force
Dt 1
- — -V p + {.’.* + F,
0
D, U DU
—_~ = — 42 xU-Q°R
Because Y Y + X

DU | ,
> E—l—‘ZSZxU—QZR = —;vp+g+Fr

on a rotating coordinate

> . 28 x U lv +g+F
pr R T P TET

Here, g = apparent gravity = ( g* + Q°R )
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Momentum Equation on a Spherical Coordinate

Equator

U=iu+jv+ kuw

D
u = Dx/Dt=acos¢ Dr/ Dt =rcosg =
5 _
v = Dy/Dt=a D¢ /Dt = f‘—¢.
o Dt
Dz
w =
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Rate of Change of U

JhDjL DK
"o TV Dy

(j singp — kcos ¢b)
(Ccos \ y
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Coriolis Force (for n-s motion)

Suppose that an object of unit mass, initially at latitude ¢ moving zonally at speed u,
relative to the surface of the earth, is displaced in latitude or in altitude by an
impulsive force. As the object is displaced it will conserve its angular momentum in
the absence of a torque in the east—west direction. Because the distance R to the
axis of rotation changes for a displacement in latitude or altitude, the absolute
angular velocity ( €2 4+ u/ R ) must change if the object is to conserve its absolute
angular momentum. Here () isthe angular speed of rotation of the earth.
Because () is constant, the relative zonal velocity must change. Thus, the object
behaves as though a zonally directed deflection force were acting on it.

Q
A .
oY u+ du 2
(Q+—_)ﬁ:3=(sz+ _)(1-3+3Rr
R : R+46R
S Su=-206R— ig;g (neglecting higher-orders)
R
Rp '1’0:' - using R = —singdy
'¢’O\”/
° i > E —('?'Qsinqb+£tan¢')&—"f'Quainqb—l—Elangb
,{&}@& < i Dt )] \7 a Dt T a
Rp+3R ¢ ,
/ 7 - and for a vertical displacement in which § R = + cos ¢éz:
# g - = i 53
7 _ -~ gat" red" Du N 1 uy Dz j 1 L
o 0 -7 E) :—(uﬂcmq‘)—l—;)ﬁ:—.,ﬂwcc:-mp—T

L ﬁ‘_\—\"’ $g+5¢ T—




Momentum Eq. on Spherical Coordinate

by 29 x U ! v F
- KU = — + L + Ky
Dy 0 P
Du B Dy wvtang + aTh i+ Dv + 02 lan ¢ n vy | "Dw  wu?40? k.
*Di ( D 7. a (ﬂ! a a )+ ( Dt a
i j k
e 2 x U=-=-20210 COS ¢ sin ¢
u v w
= —(2Qwcos¢p —22vsingd) i —22using j+ 2Q2ucosp k
dp dap dp
Vp =it it kL
ax dy dz

F, =iF, +jF,+kF,.
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Momentum Eq. on Spherical Coordinate

uv tan ¢

i Tt

a

ol

1 5
— —Ea—p+2ﬂusingb—25’2u'cnsc;’}+ Fr
X

w tang  vw 1 dp

ol

—+ ? = _Eﬂ—r — 2Qu Siﬂqﬁ + E-J,:

“2_|_ 2 1 dp

of

— Yy g4 20ucosg 4+ Fi-

Rate of change of
the spherical coordinate
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Scaling Analysis

Scale analysis, or scaling, 1s a convenient technique for
estimating the magnitudes of various terms in the governing
equations for a particular type of motion.

In scaling, typical expected values of the following quantities
are specified:

(1) magnitudes of the field variables;
(2) amplitudes of fluctuations in the field variables;

(3) the characteristic length, depth, and time scales on which
these fluctuations occur.

These typical values are then used to compare the
magnitudes of various terms in the governing equations.
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Scales of Atmospherlc Motions

Type of motion Horizontal scale (m] e hoore ~_dn',rs ok o Viiore
LIFE SPAN
Molecular mean free path 1077
Minute turbulent eddies 1072 -107!
Small eddies [ |
Dust devils 1-10
Gusts 10-102
Tornadoes 10?
Cumulonimbus clouds 10°
Fronts, squall lines 104 109
Hurricanes 10°

Synoptic cyclones 10°
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Scaling for Synoptic-Scale Motion

* The complete set of the momentum equations describe all
scales of atmospheric motions.

=>» We need to simplify the equation for synoptic-scale motions.

=>» We need to use the following characteristic scales of the field
variables for mid-latitude synoptic systems:

[/~ 10m s~!

W~ 1lcms™|

L~ 10%m

H~ 10*m
§Plp~ 10° m? s—2
LIU ~ 10° s

horizontal velocity scale

vertical velocity scale

length scale [~1/(27) wavelength]
depth scale

horizontal pressure fluctuation scale
time scale
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Pressure Gradients

 Pressure Gradients

— The pressure gradient force initiates movement of atmospheric
mass, wind, from areas of higher to areas of lower pressure

 Horizontal Pressure Gradients

— Typically only small gradients exist across large spatial scales
(1mb/100km)

— Smaller scale weather features, such as hurricanes and tornadoes,
display larger pressure gradients across small areas (1mb/6km)

 Vertical Pressure Gradients

— Average vertical pressure gradients are usually greater than
extreme examples of horizontal pressure gradients as pressure
always decreases with altitude (1mb/10m)
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Scaling Results for the Horizontal Momentum Equations

A B C D E F G
xr — Eq. % —2Qusing | +2Qwcosgp +F “UZ:,”“I' _%%i-f' 4 Fy
y — Eq. % +2Qu sin ¢ 41 u ti'::”“l"‘ _%% +Fpy
Seales UL | foU LA i |
(ms™2) 1074 10—3 10—"5 10—# 10— 103 10—12
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Geostrophic Approximation, Balance, Wind

‘Scaling for mid-latitude synoptic-scale motion

o Lap

R ———

0 dx | p oy

Ve=k x HV P | Geostrophic wind

» The fact that the horizontal flow is in approximate geostrophic balance is
helpful for diagnostic analysis.
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Weather Prediction

Du ; 1 dp ,f'( )
_ = V) — —— = U— 1T
Di ' 0 dx ' o

* In order to obtain prediction equations, it 1s necessary to retain
the acceleration term in the momentum equations.

» The geostrophic balance make the weather prognosis
(prediction) difficult because acceleration 1s given by the small
difference between two large terms.

* A small error in measurement of either velocity or pressure
gradient will lead to very large errors in estimating the

acceleration. £SS227
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Rossby Number

Ky=U/{ foL)

Rossby number is a non-dimensional measure of the
magnitude of the acceleration compared to the Coriolis force:

The smaller the Rossby number, the better the geostrophic

balance can be used |
(UL folT)

Rossby number measure the relative importnace of the inertial
term and the Coriolis term.

This number 1is about O(0.1) for Synoptic weather and about
O(1) for ocean. 7
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Scaling Analysis for Vertical Momentum Eq.

Dwily =29 cos g —(u* +L'E};'-=:..l = —;:-_Lﬂp;'ﬂz —g +F;-
UW/L U ja Py /(pH) g | vWH™?
10=7 10— 10y 10 10—13

Dw  u*+v? 1 dp
ow_um :——i—g—l—lﬂucms@—l— F, -
D 0oz '
1 Hydrostatic Balance
1 dpo
=—g
20 dz
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Hydrostatic Balance

z-Eq. Dwily —28icosg —ut 4 L'E}.."'{-.' = _p | dpfdz  —g +Fp -
Scales UW/L U U ja Po/(pH) g vWH™?
m s~ 2 107 10—3 10— 10 10 10—12

* The acceleration term 1s several orders smaller than the
hydrostatic balance terms.

=» Therefore, for synoptic scale motions, vertical
accelerations are negligible and the vertical velocity
cannot be determined from the vertical momentum

equation.
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Vertical Motions

» For synoptic-scale motions, the vertical velocity component 1s
typically of the order of a few centimeters per second. Routine
meteorological soundings, however, only give the wind speed
to an accuracy of about a meter per second.

« Thus, in general the vertical velocity 1s not measured directly
but must be inferred from the fields that are measured directly.

* Two commonly used methods for inferring the vertical motion
field are (1) the kinematic method, based on the equation of
continuity, and (2) the adiabatic method, based on the
thermodynamic energy equation.
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Primitive Equations

— = f'p‘ = — (1) zonal momentum equation
dt cx
dv oD |
—+ fﬂ = — (2) meridional momentum equation
dt )
dp (3) hydrostatic equation
- PE

cu ov Cw
T T = (4) continuity equation
cx oy op

dT  dp
EP E — &’E = Q (5) thermodynamic energy equation
p= J{:ﬂ?’ (6) equation of state
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The Kinematic Method

* We can integrate the continuity equation in the vertical to get the vertical
velocity.

( du 0V ) dw 0
dx + dv /) . + dp -
| P rouw  ov
> wip)=wps)— — + - dp
p, \dx 0y p

* We use the information of horizontal divergence to infer the vertical
velocity. However, for midlatitude weather, the horizontal divergence 1s
due primarily to the small departures of the wind from geostrophic balance.
A 10% error 1n evaluating one of the wind components can easily cause the
estimated divergence to be in error by 100%.

« For this reason, the continuity equation method 1s not recommended for

estimating the vertical motion field from observed horizontal winds.
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The Adiabatic Method

« The adiabatic method 1s not so sensitive to errors in the
measured horizontal velocities, 1s based on the thermodynamic
energy equation.

df aT a7 J
- 1 - v Spm -
ot 0x oy
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Conservation of Mass

 The mathematical relationship that
expresses conservation of mass for a fluid
Is called the continuity equation.

ap |

‘ (mass divergence form)

[ D)y
D Vel =0

p Dt (velocity divergence form)
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Mass Divergence Form (Eulerian View)

| for a fixed control volume |

pu-%lpu] L | :"._:;ipuﬁ-a%lpu?-af

Net rate of mass inflow through the sides = Rate of mass accumulation within the volume

Net flow through the dye* ® z surface)

d 0. d dx d o
pu — —{pul—l dvdz — | pu + —(pu}— dvéz = ——(pu)dxdyd:z
t‘i 1‘)1 - L:l X }

h

d
Net flow from all three directions = — |: - (pu) + —(ﬁl ) + _{ﬂ”.):| Sy
ax o il ’

do
Rate of mass accumulatic — -dxd 1z

Mass conservation [ ESS227
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Velocity Divergence Form (Lagragian View)

ou = ug —uy = D(x 4+ déx)/ Dt — Dx/Dt
w3 P > §u= D(x) /Dt

e L

» Following a control volume of a fixed mass (&6 M), the amount of mass is

1 D A | D . l Dp N | D 51 0
— {0 ) = — | ob )=
O sMDe T sV Di 0 p De &Y i |
S = D(dx) /i
| D . 1D | D | D ,;
. FITMI ) = 5—{—}'[( X))+ —‘r—{ﬂll-l-é—f—}m ) and ov = n{‘a.”-"r Di
[ o v oy = ow = Di(bz)/ D,
, 1 D ) du  dv  dw
i lim —— (V)| = — St — 4 — = Vel
bx.8y.6z=0 | 6V Dr | ax ady oz
l fﬁ
+V.U=0
P ‘r i IIEE()Sf??IZn-Yi Yu




Scaling Analysis of Continuity Eq.

| Dp
- _, +VeU=0
Wi
1/ ap w e po
] — 4+ UV |+— +VeU=10
0 df Jaly i =
A B C

where o' designates the local deviation of dEﬂ'-lIl"y tmm its horizontally averaged
value, pg (2). For synoptic scale motions p’/ pg ~ 102

1 [ap | ' U .
Term A= —( _‘,r +U-v,o’) ~ L— ~ 107 s
20 At £0 L

Cdpy W - _
TermB > 2% ~ 100! ( because d In pg/d: ~ H~! )
P dz H

dw W
~ 10~6 5! D 106!
and - 7 s

iz( du di 3 9p [
TermC = Vv.U= "4+ 4! (*”+",1) 10—

L;II d v oz

oz
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Meaning of the Scaled Continuity Eq.

I ﬂﬁ . _ scaled ) .

p Di
* Velocity divergence vanishes * For purely horizontal flow, the
(VeU=0 ) inan atmosphere behaves as though
incompressible fluid. it were an incompressible fluid.

 However, when there is
vertical motion the
compressibility associated with
the height dependence of p0
must be taken into account.
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The First Law of Thermodynamics

e This law states that (1) heat 1s a form of energy
that (2) 1ts conversion into other forms of energy
1s such that total energy 1s conserved.

e The change 1n the internal energy of a system 1s
equal to the heat added to the system minus the
work down by the system:

change in internal energy

Heat added to the system  Work d
(related to temperature) y or on

;,_-;;&-. ESS227
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CYLINDER (from Atmospheric Sciences: An Intro. Survey)

\

:::§
N § PISTON

; !

| E e Therefore, when heat 1s added

A} | to a gas, there will be some
L | combination of an expansion
> , | | of the gas (i.e. the work) and
Q ; IR Ry 'B an increase in its temperature
a ® | % | (i.e. the increase in internal

\'/, 3; ]vz energy):

Heat added to the gas = work done by the gas + temp. increase of the gas
AH = p Ao + C, AT

//

volume change of the gas specific heat at constant volume £S8227
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Heat and Temperature

« Heat and temperature are both related to the internal
kinetic energy of air molecules, and therefore can be

related to each other 1n the following way:

Heat added Mass Temperature changed

Specific heat = the amount of heat per unit mass required
to raise the temperature by one degree Celsius
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Specific Heat

TABLE 2.1 The Specific Heat of a Substance is the
Amount of Heat Required to Increase

the Temperature of One Gram of the
Substance 1° C

Specific Heat
Substance (callg/°C) (Jlkg/°C)
Water 1.0 41586
lee ().50) 2093
Air 0.24 1005
Sand 0.19 795
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Apply the Energy Conservation to a Control Volume

The first law of thermodynamics is usually derived by considering a
system in thermodynamic equilibrium, that is, a system that 1s
initially at rest and after exchanging heat with its surroundings and
doing work on the surroundings is again at rest.

A Lagrangian control volume consisting of a specified mass of fluid
may be regarded as a thermodynamic system. However, unless the
fluid 1s at rest, 1t will not be in thermodynamic equilibrium.
Nevertheless, the first law of thermodynamics still applies.

The thermodynamic energy of the control volume is considered to
consist of the sum of the internal energy (due to the kinetic energy
of the individual molecules) and the kinetic energy due to the
macroscopic motion of the fluid. The rate of change of this total
thermodynamic energy 1s equal to the rate of diabatic heating plus
the rate at which work is done on the fluid parcel by external forces.

ESS227
Prof. Jin-Yi Yu




Total Thermodynamic Energy

» [f we let e designate the internal energy per
unit mass, then the total thermodynamic
energy contained 1in a Lagrangian fluid element
of density p and volume oV 1s

ple +(1/2)U « Ul o b

I [SS227
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External Forces

* The external forces that act on a fluid element may be
divided into surface forces, such as pressure and
viscosity, and body forces, such as gravity or the
Coriolis force.

 However, because the Coriolis force 1s
perpendicular to the velocity vector, it can do

no work.
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Work done by Pressure

: The rate at which the surrounding fluid does
work on the element due to the pressure
force on the two boundary surfaces in the y,
z plane is given by:

(pul ==:> E 52 == (-pulg
y S - (purdg8vdz — (pulgdyvidz
f" /)‘
L =
3x ”
(pryp =(puya+ | —(pu)| dx+...
- ax d4

So the net rate at which the pressure d _
force does work due to the x component = [(pu) 4 — (pu)g]érdz = — T{IJ”} 24
of motion is o A

Hence, the total rate at which work is done
by the pressure force is simply
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Thermodynamic Eq. for a Control Volume

D ]
— [;;, (.:s + —U.e U) ﬁl"] = =V (plHdl + pgUsV 4+ pJolV

1 2 /

Work done by
gravity force

Work done by
pressure force

J is the rate of heating per unit mass
due to radiation, conduction, and
latent heat release.

(effects of molecular viscosity are neglected) ESS227
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Final Form of the Thermodynamic Eq.

« After many derivations, this 1s the usual form of the
thermodynamic energy equation.

* The second term on the left, representing the rate of
working by the fluid system (per unit mass), represents a
conversion between thermal and mechanical energy.

« This conversion process enables the solar heat energy to
drive the motions of the atmosphere.
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Entropy Form of Energy Eq.

DT Dy
Cy 1,!'.‘.'— = J
Di Dy * The rate of change of entropy (s) per unit
mass following the motion for a
Pa=RT thermodynamically reversible process.
Cp=Cv+R * Areversible process is one in which a
v system changes its thermodynamic state
and then returns to the original state without
. DT Y Dp ; changing its surroundings.
2 LT — w
" Di Dy
Divided by T

- DInT Hmn p o J  Ds
Y 2y, T ),
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Potential Temperature (0)

e For an 1deal gas undergoing an adiabatic process (i.e., a reversible
process in which no heat 1s exchanged with the surroundings; J=0),
the first law of thermodynamics can be written in differential form as:

cpDInT — RDInp=D(cylnT — Rlnp) =0

| | L pie Diné J Ds
> 4 H e ' .."' H"":F > 4 i = — =
=1 (ps/p) "D T T D

Thus, every air parcel has a unique value of potential temperature, and this
value 1s conserved for dry adiabatic motion.

Because synoptic scale motions are approximately adiabatic outside regions
of active precipitation, 0 1s a quasi-conserved quantity for such motions.

Thus, for reversible processes, fractional potential temperature changes are
indeed proportional to entropy changes.

A parcel that conserves entropy following the motion must move along an

1sentropic (constant 0) surface. ESS227
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Static Stability

If potential temperature 1s a function of height, the atmospheric lapse rate, I’
—dT/dz, will differ from the adiabatic lapse rate and

If I < I'd so that 8 increases with height, an air parcel that undergoes an
adiabatic displacement from its equilibrium level will be positively buoyant when
displaced downward and negatively buoyant when displaced upward so that it
will tend to return to its equilibrium level and the atmosphere is said to be

statically stable or stably stratified.

dt g/dz = 0O statically stable,
df g/dz = statically neutral,
dt g/dz < 0 statically unstable.
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Scaling of the Thermodynamic Eq.

2R S R T

L dT _dp
= gt =
LP ar ~ Y
L dTl cp C e cp
C —=J+ro=L=+a(ll - Vp)+w=
Pt o T VR T
L dT cp e
LPE = J 4 o= +o( - Vi we
df _ J g . \
a C. C.
pF Small terms; neglected after scaling
o _ 1 _ &, y.ovr-wd
ct C;J P oz
=-9T/ oz = lapse rate
o _ Sy oerow{ L4800 4= -g/c, = dry lapse rate
cf P . P CZ/
Ei—T - _v VI-w(l, -T)
ef G, ESS227
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Pressure Gradients

 Pressure Gradients

— The pressure gradient force initiates movement of atmospheric
mass, wind, from areas of higher to areas of lower pressure

 Horizontal Pressure Gradients

— Typically only small gradients exist across large spatial scales
(1mb/100km)

— Smaller scale weather features, such as hurricanes and tornadoes,
display larger pressure gradients across small areas (1mb/6km)

 Vertical Pressure Gradients

— Average vertical pressure gradients are usually greater than
extreme examples of horizontal pressure gradients as pressure
always decreases with altitude (1mb/10m)
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Temperature Tendency Equation

3 S . |
cl oy NT_wT,-T)
cf (. o
J!'J
Term A TermB Term C

 Term A: Diabatic Heating
e Term B: Horizontal Advection
e Term C: Adiabatic Effects

(heating/cooling due to vertical motion in a stable/unstable atmosphere)
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Primitive Equations

* The scaling analyses results 1n a set of approximate
equations that describe the conservation of
momentum, mass, and energy for the atmosphere.

* These sets of equations are called the primitive
equations, which are very close to the original
equations are used for numerical weather prediction.

e The primitive equations does not describe the moist
process and are for a dry atmosphere.
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Primitive Equations

— = f'p‘ = — (1) zonal momentum equation
dt cx
dv oD |
—+ fﬂ = — (2) meridional momentum equation
dt )
dp (3) hydrostatic equation
- PE

cu ov Cw
T T = (4) continuity equation
cx oy op

dT  dp
EP E — &’E = Q (5) thermodynamic energy equation
p= J{:ﬂ?’ (6) equation of state
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