Lecture 1: Introduction and Review
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Dynamics and Kinematics

» Kinematics: The term kinematics means
motion. Kinematics is the study of motion
without regard for the cause.

* Dynamics: On the other hand, dynamics is the
study of the causes of motion.

» Review of fundamental mathematical tools

* Fundamental and apparent forces

This course discusses the physical laws that

govern atmosphere/ocean motions.
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Basic Conservation Laws

Atmospheric motions are governed by three fundamental
physical principles:
 conservation of mass (continuity equation)
* conservation of momentum (Newton’s 22 law of motion)
 conservation of energy (1% law of thermodynamics)

We need to develop mathematical formulas
to describe these basic laws.
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Control Volume

» The mathematical relations that express these laws
may be derived by considering the budgets of mass,
momentum, and energy for an infinitesimal control
volume in the fluid.

» Two types of control volume are commonly used in
fluid dynamics: Eulerian and Lagrangian.
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Lagrangian View of Control Volume

Change in Lagrangian

Ug I b ug
control volume (shown by
— shading) due to fluid motion

P
- —
up Bt g Bt para_llel to the
X axis.
|

+ Inthe Lagrangian frame, the control volume consists of an
infinitesimal mass of “tagged” fluid particles.

* The control volume moves about following the motion of the
fluid, always containing the same fluid particles.
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Eulerian View of Control Volume
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« In the Eulerian frame of reference the control volume consists
of a parallelepiped of sides 8x, dy, 6z, whose position is fixed
relative to the coordinate axes.

¢ Mass, momentum, and energy budgets will depend on fluxes
caused by the flow of fluid through the boundaries of the

control volume.
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Linking Lagrangian and Eulerian Views

» The conservation laws to be derived contain expressions for the
rates of change of density, momentum, and thermodynamic
energy following the motion of particular fluid parcels.

= The Lagrangian frame is particularly useful for deriving
conservation laws.

* However, observations are usually taken at fixed locations.
= The conservation laws are often applied in the Eulerian frame.

Therefore, it is necessary to derive a relationship between the rate of
change of a field variable following the motion (i.e., total derivative;
Lagrangian view) and its rate of change at a fixed point (i.e., local

derivative; Eulerian view).
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Eulerian and Lagrangian Views

* Eulerian view of the flow field is a way of looking at fluid
motion that focuses on specific locations in the space through
which the fluid flows.

» Lagrangian view of the flow field is a way of looking at fluid
motion where the observer follows an individual fluid parcel
as it moves through space and time.

In order to apply conservation laws in the Eulerian frame, it
is necessary to derive the relationship between the rate of
change of a field variable following the motion and its rate

of change at a_fixed location. \
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Linking Total Derivative to Local Derivative

In order to relate the total derivative to the local rate of change at a fixed point,
we consider the temperature measured on a balloon that moves with the wind.
Suppose that this lemperature is o at the peint xo, y, zo and tme ro. I the bal-
loon moves io the point xy 4 6x, 1y + 6y, 29 + dz in a time incrementi 47, then
the temperatre change recorded on the balloon, 6 T, can be expressed in a Taylor
Series expansion as

aT ar aT aT
6T = (—) St [ — |ox 4+ | — ) v+ (—) &z + ( higher order terms)
at dx ay ) - dz

Dividing through by ¢ and noting tal 87 is the change in (emperature following
the motion so that

DT . 6T

— = lim —

Dt se—0 8t
we find that in the limit ér — 0

DTﬁ&T [dT\ Dx (3T\ Dy [3T\ Dz
o "o \ax ) o T\ay ) o ez ) o

is the rate of change of T following the motion.
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Taylor Series Expansion

f'(a) f"(a) » , [¥) a,
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» Taylor series is a representation of a function
as an infinite sum of terms calculated from the
values of its derivatives at a single point.

* It is common practice to use a finite number of
terms of the series to approximate a function.
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Partial Differential

d T flay, .. ey 0+ hoagy, .. 60) — flay, ... 6,)
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* A partial derivative of a function of several variables
is its derivative with respect to one of those variables,
with the others held constant.

» As opposed to the total derivative, in which all
variables are allowed to vary.
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If we now let
Dx Dy Dz
o "o U o
then u, v, w are the velocity components in the x, y, z directions, respectively, and
DT AT aT aT oT
E: ¥+ (ua+1'¥+w¥)

Using vector notation this expression may be rewritten as

aT DT
—=——-U.V¥T
ar Dt
Z 1

£ the velocity vector. The tdxq —U « VT is called the
gives the conlribution to the loc™ temperature change

where U = iu + ju 4 kw
temperature advection,
due to air motion.

Chang with Time Chang with Time Rate of
at a Fixed = | Following an Air | + Importation by
Location Parcel Movement of Air
local measurements conservation laws local measurements
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Example

Q: The surface pressure decreases by 3 hPa per 180 km in the
eastward direction. A ship steaming eastward at 10 km/h measures
a pressure fall of 1 hPa per 3 h. What is the pressure change on an
island that the ship is passing?

A: The pressure change on the island ( 2 ) can be linked to the

ar
pressure change on the ship ( %) in the following way:
f

ap Dp ap
o  Di ox

dp _—lhPa 10km —3hPay  1hPa
at ~  3h h 180km/ ™ 6h
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Coordinate System

A coordinate system is needed to describe the location in
space.

(1) Cartesian (x, y, 2)

™

(2) Spherical (p, @, 6) (3) Cylindrical (p, @, z)
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The spherical coordinarte system,
slowing a point, P and its

A eylindrical coordinate system,
showing radius, p, azimutl, ¢ ad
coordinates, 5,8 and g height, =.
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Natural Coordinate

» At any point on a horizontal surface, we can define a pair
of a system of natural coordinates (t, n), where t is the
length directed downstream along the local streamline,
and n is distance directed normal to the streamline and

toward the left. n ESS227
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State Variable

* Fundamental state variables (A) in the atmosphere
(such as temperature, pressure, moisture, geopotential
height, and 3-D wind) are function of the independent
variables of space (X, y, z) and time (t):

A=A(x,Y, zt)
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Scalar and Vector

* Many physical quantities in the atmosphere are described
entirely in terms of magnitude, known as scalars (such as
pressure and temperature).

» There are other physical quantities (such as 3D-wind or
gradient of scalar) are characterized by both magnitude
and direction, such quantities are known as vectors.

* Any description of the fluid atmosphere contains
reference to both scalars and vectors.

» The mathematical descriptions of these quantities are
known as vector analysis.
- ESS227
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Representation of Vector
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Vector Multiplication

(1) Multiplication by a scalar

cA = (c _T)f + (CA_,.)}+(CAZ ]]E

(2) Dot product (scalar product) = scalar (e.g., advection)
A-B=A4B,+~A4,B, +A.B.

(3) Cross product (vector product) = vector (e.g., vorticity)

=

Al=la 8 A8 F (48 4B )j (48 48]

= = -

A e

=
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Four Most Important Vector Operations

Operation Notation Description Domain/Range

Measures the rate and

Gradient grad(f) = Vf direction of change in a Maps scalar fields

scalar Tield. to vector ficlds.
Measures the tendency
Curl cur](F) =V x F | torotate about a point in Maps vector fields
to vector fields.

a vector feld.

Measurcs the magnitude
. : _ . of'a source or sink at a |~ Maps vector fields

Divergence dW(F) =V-F given point in a vector to scalar fields.
field.

A composition of the
Laplacian |Af = sz =V - Vf| divergence and gradient
operations.

Maps scalar fields
to scalar fields.
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Gradient (Derivative) Operator

af. Of: Of-
Vf(xsysz)=(g_igg—£,g—i)= 3—£1+£J+3_£

* We will often need to describe
both the magnitude and
direction of the derivative of a
scalar field, by employing a
mathematical operator known as

the del operator.
- ESS227
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Curl (Rotor) Operator

i j k
= o _ _(OF. OF,\. oF, OF.\. [OF, OF:
G [8 & () (e (e
F, F, F.

* The curl (or rotor) is a vector operator that describes the rotation of a
vector field.

* Atevery point in the field, the curl is represented by a vector.

* The length and direction of the vector characterize the rotation at that
point.

* The curl is a form of differentiation for vector fields.

* A vector field whose curl is zero is called irrotational. -
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Example

« In this case, the curl is actually a constant, irrespective of position.
* Using the right-hand rule, we expect the curl to be into the page.
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Divergence Operator

ou v oW
divF =V .-F = 8:::+8y+3z'

V-F>0 — .. V-F<0

P T T

P T T

» divergence is an operator that measures the magnitude of a vector
field’s source or sink at a given point, in terms of a signed scalar.

()

* Negative values of divergence is also known as “converience .
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Laplacian Operator

32)" *f  a*f
or? By +322

Vif=V.-Vf=

* The Laplace operator is used in the modeling of wave
propagation, heat flow, and fluid mechanics.
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Fundamental and Apparent Forces

Newton’s second law of motion states that the rate of change of momentum (i.e., the
acceleration) of an object, as measured relative to coordinates fixed in space, equals the
sum of all the forces acting.

For atmospheric motions of meteorological interest, the forces that are of primary concern
are the pressure gradient force, the gravitational force, and friction. These are the
fundamental forces.

For a coordinate system rotating with the earth, Newton’s second law may still be applied
provided that certain apparent forces, the centrifugal force and the Coriolis force, are
included among the forces acting. ES$227
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Inertial and Noninertial Reference Frames

+ In formulating the laws of atmospheric dynamics it is natural to use a geocentric
reference frame, that is, a frame of reference at rest with respect to the rotating
earth.

* Newton’s first law of motion states that a mass in uniform motion relative to a
coordinate system fixed in space will remain in uniform motion in the absence of
any forces.

e Such motion is referred to as inertial motion; and the fixed reference frame is an
inertial, or absolute, frame of reference.

* Itis clear, however, that an object at rest or in uniform motion with respect to the
rotating eaﬂh is not at rest or in uniform motion relative to a coordinate system
fixed in space.

* Therefore, motion that appears to be inertial motion to an observer in a geocentric
reference frame is really accelerated motion.

* Hence, a geocentric reference frame is a noninertial reference frame.

* Newton’s laws of motion can only be applied in such a frame if the acceleration of
the coordinates is taken into account.

*  The most satlsfactory way of including the effects of coordinate acceleration is to
introduce “apparent” forces in the statement of Newton’s second law.

* These apparent forces are the inertial reaction terms that arise because of the
coordinate acceleration.

* For a coordinate system in uniform rotation, two such apparent forces are required:
the centrifugal force and the Coriolis force.
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Convention of Using Cartesian Coordinate

Y z

» X increases toward the east.
* Y increases toward the north.
» 7 1s zero at surface of earth and increases

upward. - Frot Jin-Yi Y

Pressure Gradient Force

Use Taylor expansion =

(xg, ¥o.25)

Fau

Pressure Gradient Force &

) dpdxy
Fyy=- (m +3:3 )0.1 bz

dpdey
Fpe =+ (Pﬂ -3 )*‘."“:
ax

(%7

ap oo
Fe=Fye+ Fge = r Sxdydz

m = pdxdyvéz € Mass of the air parcel

Fe 1 ap .
—=——— € Force per unit mass
" £ ox

F I dp F. 1 ip
A — __‘;. and '-=—--".lf'
m oy m p oz
F 1

—=—=Vp

m ~
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Gravitational Force

o MNewton's law of universal gravitation states that any two elements of mass in the
universe attract each other with a force proportional o their masses and inversely
proportional to the square of the distance separating them.

oThus, if the earth is designated
as mass M and m is a mass element of the atmosphere, then the force per unit mass
exerted on the atmosphere by the gravitational attraction of the earth is

F, , GM )
;

=g =—-——
— m re
r"/ -
)(,rﬁ" J I" = ¢ 4+ ' (@ earthradius; Z: height above surface)
o
BERREN" oo B
- (1 + z/a)?
7
( M)\ where gf = —(GM/a)(r/r)
\ )‘ is the gravitational force at mean sea level.
\

\_/f g For meteorological applications,
Tover spherrbed i whous conhies ahe spmehad by o ks I a -
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Frictional (Viscous) Force

« Any real fluid is subject to internal friction
(viscosity)

« Force required to maintain this flow
> F=pdunf!

« For a layer of fluid at depth dZ, the force is
> F = juddufdz

« Viscous force per unit area (shearing stress):
i Su du
> _5;210u5z _#Bz

g

—— e e S

n]2

B

~ - By

Stress acting on the fluid below the box

r - ST B2
T

« Stresses applied on a fluid element
-)(r;. Ny ) dx b \.\' iv

stress acting on the box from the fluid below

« Viscous force per unit mass due to stress

1 a7y I BT
> podz  pas (“ .'a:)

« Frictional force per unit mass in x-direction
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Centrifugal Force

Aball of mass m is attached to a string and || * An observer (* ) in an inertial coordinate
whirled through a circle of radius r at a =>sees the ball’s direction keeps on changing
constant angular velocity o.

« Acceleration of the ball = (3V / &t)
2 |5¥| = |V| 8¢ and in the limit of &r — 0.
v i

> 5o =Vig, (-:—} (“: force goes inward)

= because |V| = wrand DF/ D = w

v
D

——ulr = +(V2)

« An observer (* ) rotating with the ball

=> sees no change in the ball’s motion

=> but the observer sees the pulling of the ball by the string
=> in order to apply Newton's 2" law to describe the ball's motion in this rotation coordinate
=> an apparent force has to be added which is opposite to centripetal force

-)| centrifugal force = - centripetal force = wr | H

ESS227

=> there is a centripetal force applied to the ball

=> The ball is pulled inward by the centripetal force|
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Coriolis Force

* By adding the “apparent” centrifugal force, we can
use Newton’s 2nd law of motion to describe the force
balance for an object at rest on the surface of the
earth.

» We need to add an additional “apparent” Coriolis

force in the 2"d law if the object is in motion with
respect to the surface of the earth.
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Coriolis Force (for n-s motion)

Suppose that an object of unit mass, initially at latitude ¢ moving zonally at speed u,
relative to the surface of the earth, is displaced in latitude or in altitude by an
impulsive force. As the object is displaced it will conserve its angular momentum in
the absence of a torque in the east-west direction. Because the distance R to the
axis of rotation changes for a displacement in latitude or altitude, the absolute
angular velocity ( £2 + 1/ R ) must change if the object is to conserve its absolute
angular momentum. Here ¢ is the angular speed of rotation of the earth.
Because ¢ is constant, the relative zonal velocity must change. Thus, the object
behaves as though a zonally directed deflection force were acting on it.

i
»

u 2 u+ du 2
Q4+ — R':(!Z-i- ) R4+ 6R)
( R) R+4R L )

Coriolis Force (for e-w motion)

Suppose now that the object is set in motion in the eastward direction by an
impulsive force. Because the object is now rotating faster than the earth, the
centrifugal force on the object will be increased.

The excess of the centrifugal force over that for an object at rest becomes the
Coriolis force for this zonal motion on a rotation coordinate:

2 . 2 2
(2+=) T L]
R R R-

The meridional and vertical components of these forces are:

> du=-286R — iapf (neglecting higher-orders)
R
g % using &R = —singdy
o\ :
Prd i Dy 2035 ¢'HI. d’} Dy _aa ,¢+m'|‘ "
- H - | =2 + —U —= = 2Qus — 1
&:‘{d} a H 9 (!" ) { mn a an i vsin . an
Rg+8R +% H
2 v - and for a vertical displacement in which §8 = + cos¢hdz:
. L
S e DU rorcons s V2 — oo 10
e (55) =-(ocme5) 5 = owemo -
24y fot

(Enu cos ¢ D :
v u
— | = =2Qusin¢ — — tan
R 20u(R/R) ( Dt ) ¢ a ¢
\ 200 sin ¢ (D"'
Dt
7
. H ESS227
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Summary of Coriolis Force

(%) = (2.Qsinqb + Stanq&) % =2Qusin¢g + ?lanqﬁ
Dv’ : .
(D_;) = —2Qusin ¢ — I; tan ¢

For synoptic-scale motion, |«| <« QR , therefore:

Apparent Gravity (g) and Geopotential (D)
0

5 * An object at rest on earth’s surface
N Earth experiences both the gravitational force
Sphere (g*) and a centrifugal force (-Q2R).

R 2, * Asa result, these two forces together
= R peqult in an “apparent gravity” force (g):

g=—gk=g"+ QR

* True gravity (g) is perpendicular to a
sphere, but the apparent gravity (g*) is
perpendicular to earth’s surface.

* Geopotential is the work required to
raised a unit mass to height z from mean
sea level:

CD:f gdz and Vb =—g
0

wrewan 4 YU

approximates an oblate spherid [Rp—

Du .
(— =2Qusing = fv
Dt Co DV i
D — =] s Sk xV
v . g
(—) = —2Qusing = — fu Co
Dt ) ¢,
where [ = 20 sin ¢ is the Coriolis parameter. H Ef.ffﬁ?..y. v
Inertial Cycle
a N b
-‘_ ;- * An air or water mass moving with speed V
s OO subject only to the Coriolis force travels in a
1 N circular trajectory called an 'inertial circle'.
H et . L .
? » Since the force is directed at right angles to the
v Rotating motion of the particle, it will move with a
FIGURE 614, Trai N constant speed, and perform a complete circle
1G hul4. Trajectory of the puck on the rotat- .
ing, parabolic surface during one o period of the with frequency f.

» The magnitude of the Coriolis force also
determines the radius of this circle: Radius =
VI

*  On the Earth, a typical mid-latitude value for f
is 1074 s7!; hence for a typical atmospheric
speed of 10 m/s the radius is 100 km, with a
period of about 14 hours.

« In the ocean, where a typical speed is closer to
10 cm/s, the radius of an inertial circle is 1 km.

« These inertial circles are clockwise in the
northern hemisphere (where trajectories are
bent to the right) and anti-clockwise in the

southern hemisphere.
ESS227
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