Part 6. Objective Analysis
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Purpose of Objective Analysis

U Observations are often available only at afew stations that
are unevenly spaced in the domain of interests.

U In order to compute derivatives of the field variables, as
would be required in diagnostic studies or in the
initialization of a numerica model, or simply to perform a
sensible averaging process, one often requires values of the
variables at points on aregular grid.

U Assigning the best values at the grid points, given data at
arbitrarily located stations and perhaps afirst guess at
regular grid points, is what has traditionally been called

objective analysis. _
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When to Do the Gridding?

Polynomial Fitting Method

U The methods described are applicable to any problem
where the data you are given do not fill the domain of
interest fully, and/or where the data must be interpolated to
aregular grid.

O The gridding can bein space, in time, or both.
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O We can use a polynomial function to fit the observational data and then
use this function to generate data on regular grids.

QO In meteorological applications, up to third order polynomial have been

used. But usually, quadratic equation is sufficient for most purpose:
M_Q.Ennc+a_a+ nm&m.,r nwvi. athu +ama‘<

Q The problem now it to determine the values of the coefficients: a,
ay, ...., and a.

Q If we have 6 observations of h, then we can determine the 6
coefficientsin the quadratic polynomial function.

O We can then use the polynomial function for gridding purpose.
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Problems With the Polynomia Method

Polynomial Fitting Sensitivity to Missing Data
8 TTIT [TT T[T TITIT AT TTTIT T TTITT

7 E| —e—C \/

If this point

ismissing. /.,w- i \\\.#l

1 2 3 4 5 6 7 8
X (from Hartmann 2003)

0 Theinstability of the polynomial fit is such that when one key data
point is removed, the polynomial fit in that region may change

radically. .
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Problems With the Polynomia Method

U Polynomial fits are unstable in the sense that the values the
polynomials give at points between the stations vary
greatly for small changesin the data at the station points,
and especially so when data are missing.

U The problem gets worse as the order of the polynomial is

increased. The method is nearly useless where the data are
sparse.
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Optimum Interpolation

| nterpolation

O The optimum interpolation (Ol) is alinear interpolation which
requires its root-mean square error to be minimum.

O Thediscussion of this method focuses on the “deviations from a
normal state”:

U Let'ssay we have avariable ¢ and its normal state ¢ . This
normal state can be the climatological value of ¢ or afirst guess
of ¢.

U Then we can define the deviation of ¢ from itsnormal stateas ¢':

¢ =0—00m; Pnom =9 OT a first guess.
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O Now, we want to approximate the value of ¢ at agrid point (¢,),
in terms of alinear combination of the values of ¢ at
nei ghboring station points (¢,):

N
¢ = M..Pa_..u. ' = grid value; ¢;' = station values.

i=1

O We want to determine the coefficients p, by minimizing the
mean squared error:

N Z
E u?_ -M%...g
i=l
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Determine the Weightings

O We can normalized the error E:

E N N N
mmdu_lthzw?MMEE& where 'z =
Qm i=1 i=lj=1 ﬁw

O Now we can determine the weightings (p;) by asking:

N

de .

ml.c“.u \NNWNLM_\F_.&MQ i=1,2,..N
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O Wethen solvethe N linear equations for theN p's.

Q It can be shown that the error obtained after fitting the coefficientsis:

N
£ HTM@,_S_
i=1
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What Do We Need to Get P,?

U We need to know r;; and r; in order to solve the N linear
equation for the N Ps.

=>» But we don’t data at grid points (can not calculated
ri .
oi

U Itistypical to assumethat correlations between points
depend only on the distance between them and not on
location or direction.

U So we calculate the r; from station data and obtain ry; from
r;; based on the distance between the grid points and the

stations.
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Composite Analysis

O Compositing analysis (also called superposed epoch analysis) isto sort
time seriesinto different categories (or phases) and to compare means
in these categories.

Q For example, how do Pacific SSTsevolve before, during, and after an
El Nino event? In this case, there are three categories (before, during,
and after) in the composite analysis.

O Compositing is useful when you have many observations of some
event and you are looking for responses to that event that are combined
with noise from alot of other influences.

O The basic idea of the compositing analysisis that the averaging process
will remove noise and keep the signals of interest.

Q Often compositing will reveal periodic phenomena with fixed phase
that cannot be extracted from spectral analysisif the signal is small

compared to the noise. _
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Stepsin Compositing Analysis

O Select the basis for compositing and define the categories

The categories might be related to the phase of some cyclic
phenomenon or forcing, or to time or distance from some event. For
example, we can use NINO3 index as the basis for compositing the
ENSO cycle.

O Compute the means and statistics for each category

We calculate the mean SST, wind stress, or heat flux for the onset,
growing, and mature phases of the ENSO cycle.

QO Organize and display the results

O Validate the results
Validation of the results can be achieved in many ways. Statistical
significance tests are only one of these.
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An Example -
the MJO Cycle
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Step 1. Define Index

Time-Lag Correlation Between PC1 and PC2

NCEP/NCAR Reanalysis
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NCEP
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Step 2: Compute the Means
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Step 3: Display the MJO Life Cycle
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