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P
art 4: T

im
e Series II

E
O

F A
nalysis

Principal C
om

ponent

R
otated E

O
F

Singular V
alue 

D
ecom

position (SV
D

)

E
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E
m

pirical O
rthogonal Function A

nalysis

E
m

pirical O
rthogonal Function (E

O
F) analysis attem

pts to 
find a relatively sm

all num
ber of independent variables 

(predictors; factors) w
hich convey as m

uch of the original 
inform

ation as possible w
ithout redundancy.

E
O

F analysis can be used to explore the structure of the 
variability w

ithin a data set in a objective w
ay, and to 

analyze relationships w
ithin a set of variables.

E
O

F analysis is also called principal com
ponent analysis 

or factor analysis.

E
SS210B

P
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u

W
hat D

oes E
O

F A
nalysis do?

In brief, E
O

F analysis uses a set of orthogonal functions 
(E

O
Fs) to represent a tim

e series in the follow
ing w

ay:

Z
(x,y,t) is the original tim

e series as a function of tim
e (t) 

and space (x, y).

E
O

F(x, y) show
 the spatial structures (x, y) of the m

ajor 
factors that can account for the tem

poral variations of Z
.

PC
(t) is the principal com

ponent that tells you how
 the 

am
plitude of each E

O
F varies w

ith tim
e.
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E
O

F
-1

50%

P
C

1

t
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E
O

F
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20%
t

P
C
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E
O

F
-3

••••

9%
t

P
C

3

E
O

F
-n

<
1%

Feb., 1900

D
ec., 1998 •••

N
ov., 1998 •

Jan., 1900
SST

99 * 12 = 1188 m
aps

E
O

F

A
nalysis

P
rincipal C

om
ponent

E
O

F
 (E

igen V
ector)

E
igen V

alue

W
hat D

o Y
ou G

et from
 E

O
F

?
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A
n E

xam
ple

P
rincipal C

om
ponent

L
eading E

O
F

 M
ode

W
e apply E

O
F analysis to a 

50-year long tim
e series of 

Pacific S
ST

 variation from
 a  

m
odel sim

ulation.

T
he leading E

O
F m

ode show
s 

a E
N

SO
 SS

T
 pattern. T

he E
O

F 
analysis tells us that E

N
S

O
 is the 

largest process that produce S
ST

 
variations in this 50-year long 
m

odel sim
ulation.

T
he principal com

ponent tells 
us w

hich year has a E
l N

ino or L
a 

N
ina, and how

 strong they are.

E
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A
nother V

iew
 of the R

otation

(from
 H

artm
ann 2003)

P
C
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R
otation of C

oordinates 
Suppose the Pacific S

ST
s are described by values at grid points:x

1 , x
2 , 

x
3 , ...x

N . W
e know

 that the
x

i ’s are probably correlated w
ith each other. 

N
ow

, w
e w

ant to determ
ine a new

 set of independent predictors z
i to 

describe the state of Pacific SS
T

, w
hich are linear com

binations
of x

i :

M
athem

atically, w
e are rotating the old set of variable (x) to a

new
 set 

of variable (z) using a projection m
atrix (e):

P
C

E
O

F
E

SS210B
P

rof. Jin-Y
i Y

u

D
eterm

ine the Projection C
oefficients

T
he E

O
F analysis asks that the projection coefficients are determ

ined in 
such a w

ay that:

(1)
z

1
explains the m

axim
um

 possible am
ount of the variance of the x’s;

(2) z
2

explains the m
axim

um
 possible am

ount of the rem
aining  variance

of the x’s;

(3) so forth for the rem
aining z’s.

W
ith these requirem

ents, it can be show
n m

athem
atically that the

projection coefficient functions (e
ij ) are the eigenvectors of the covariance 

m
atrix of x’s.

T
he fraction of the total variance explained by a particular eigenvector is 

equal to the ratio of that eigenvalue
to the sum

 of all eigenvalues.

the orthogonal requirem
ent in tim

e !
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E
igenvectors of a Sym

m
etric M

atrix

A
ny sym

m
etric m

atrix R
 can be decom

posed in the follow
ing w

ay 
through a

diagonalization, or eigenanalysis:

W
here E

 is the m
atrix w

ith the eigenvectors
e

i as its colum
ns, and L

 is 
the m

atrix w
ith the

eigenvalues λ
i , along its diagonal and zeros  

elsew
here.

T
he set of eigenvectors,e

i , and associated
eigenvalues,λ

i , represent a 
coordinate transform

ation into a coordinate space w
here the m

atrix R
 

becom
es diagonal.

E
SS210B

P
rof. Jin-Y

i Y
u

C
ovariance M

atrix
T

he E
O

F analysis has to start from
 calculating the covariance m

atrix.

For our case, the state of the Pacific S
ST

 is described by values at 
m

odel grid points X
i . 

L
et’s assum

e the observational netw
ork in the Pacific has 10 grids in 

latitudinal direction and 20 grids in longitudinal direction, then there 
are 10x20=

200 grid points to describe the state of pacific SST
. S

o w
e 

have 200 state variables:

X
m (t), m

 =1, 2, 3, 4, …
, 200

In our case, there are m
onthly observations of SST

s over these 200 
grid points from

 1900 to 1998. S
o w

e have N
 (12*99=

1188) 
observations at each X

m
:

X
m

n
=

 X
m (tn ), m

=1, 2, 3, 4, …
., 200

n=1, 2, 3, 4, …
.., 1188

E
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C
ovariance M

atrix –
cont.

T
he covariance betw

een tw
o state variables X

i and X
j is:

T
he covariance m

atrix is as follow
ing:

H
ere N

 =
 1188

X
12

X
1,M

-1
X

1M
X

11
X

13
•••••

X
22

X
2,M

-1
X

2,M
X

21
X

23
•••••

X
32

X
3,M

-1
X

3,M
X

31
X

33
•••••

X
M

-1,2
X

M
-1,M

-1
X

M
-1,M

X
M

-1,1
X

M
-1,3

•••••
X

M
,2

X
M

,M
-1

X
M

,M
X

M
,1

X
M

,3
•••••

H
ere M

=
 200
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E
igenvectors of a Sym

m
etric M

atrix

A
ny sym

m
etric m

atrix R
 can be decom

posed in the follow
ing w

ay 
through a

diagonalization, or eigenanalysis:

W
here E

 is the m
atrix w

ith the eigenvectors
e

i as its colum
ns, and L

 is 
the m

atrix w
ith the

eigenvalues λ
i , along its diagonal and zeros  

elsew
here.

T
he set of eigenvectors,e

i , and associated
eigenvalues,λ

i , represent a 
coordinate transform

ation into a coordinate space w
here the m

atrix R
 

becom
es diagonal.
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O
rthogonal C

onstrains

T
here are orthogonal constrains been build in in the E

O
F 

analysis:

(1)
T

he principal com
ponents (PC

s) are orthogonal in tim
e.

T
here are no sim

ultaneous tem
poral correlation betw

een 
any tw

o principal com
ponents.

(2) T
he E

O
Fs are orthogonal in space.

T
here are no spatial correlation betw

een any tw
o E

O
Fs.

T
he second orthogonal constrain is rem

oved in the rotated 
E

O
F analysis.

E
SS210B

P
rof. Jin-Y

i Y
u

M
athem

atic B
ackground

I don’t w
ant to go through the m

athem
atical details of E

O
F 

analysis. O
nly som

e basic concepts are described in the 
follow

ing few
 slids.

T
hrough m

athem
atic derivations, w

e can show
 that the 

em
pirical orthogonal functions (E

O
Fs) of a tim

e series Z
(x, 

y, t) are the eigenvectors of the covarinace m
atrix of the 

tim
e series.

T
he eigenvalues

of the covariance m
atrix tells you the 

fraction of variance explained by each individual E
O

F.

E
SS210B

P
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i Y
u

Som
e B

asic M
atrix O

perations
A

 tw
o-dim

ensional data m
atrix X

:

T
he transpose of this m

atrix is X
T:

T
he inner product of these tw

o m
atrices:

E
SS210B

P
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u

H
ow

 to G
et P

rincipal C
om

ponents?

If w
e w

ant to get the principal com
ponent, w

e project a single 
eigenvector onto the data and get an am

plitude of this eigenvector at 
each tim

e, e
TX

:

For exam
ple, the am

plitude of E
O

F
-1 at the first m

easurem
ent tim

e is 
calculated as the follow

ing:
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U
sing SV

D
 to G

et E
O

F&
P

C

W
e can use Singular V

alue D
ecom

position (SV
D

) to get  
E

O
Fs,eigenvalues, and PC

’s directly from
 the data m

atrix, 
w

ithout the need to calculate the covariance m
atrix from

 
the data first.

If the data set is relatively sm
all, this m

ay be easier than 
com

puting the covariance m
atrices and doing the

eigenanalysis
of them

. 

If the sam
ple size is large, it m

ay be com
putationally m

ore 
efficient to use the

eigenvalue
m

ethod.

E
SS210B

P
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W
hat is SV

D
?

A
ny m

 by n m
atrix A

 can be factored into 

T
he colum

ns of U
 (m

 by m
) are the E

O
Fs

T
he colum

ns of V
 (n by n) are the P

C
s. 

T
he diagonal values of Σ

are the eigenvalues represent the am
plitudes 

of the E
O

Fs, but not the variance explained by the E
O

F
.

T
he square of the eigenvalue from

 the SV
D

 is equal to the eigenvalue 
from

 the eigen analysis of the covariance m
atrix.

original tim
e series

E
O

F
s

norm
alized P

C
s

E
SS210B

P
rof. Jin-Y

i Y
u

A
n E

xam
ple –

w
ith SV

D
 m

ethod

(from
 H

artm
ann 2003)

E
SS210B

P
rof. Jin-Y

i Y
u

A
n E

xam
ple –

W
ith E

igenanalysis

(from
 H

artm
ann 2003)
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C
orrelation M

atrix
Som

etim
e, w

e use the correlation m
atrix, in stead of the covariance 

m
atrix, for E

O
F analysis.

For the sam
e tim

e series, the E
O

Fs
obtained from

 the covariance 
m

atrix w
ill be different from

 the E
O

Fs obtained from
 the correlation 

m
atrix.

T
he decision to choose the covariance m

atrix or the correlation m
atrix 

depends on how
 w

e w
ish the variance at each grid points (X

i ) are 
w

eighted.

In the case of the covariance m
atrix form

ulation, the elem
ents of the 

state vector w
ith larger variances w

ill be w
eighted m

ore heavily. 

W
ith the correlation m

atrix, all elem
ents receive the sam

e w
eight and 

only the structure and not the am
plitude w

ill influence the principal 
com

ponents.
E

SS210B
P

rof. Jin-Y
i Y

u

C
orrelation M

atrix –
cont.

T
he correlation m

atrix should be used for the follow
ing 

tw
o cases:

(1)T
he state vector is a com

bination of things w
ith different 

units. 

(2) T
he variance of the state vector varies from

 point to point 
so m

uch that this distorts the patterns in the data.

E
SS210B

P
rof. Jin-Y

i Y
u

Presentations of E
O

F –
V

ariance M
ap

T
here are several w

ays to present E
O

F
s. T

he sim
plest w

ay is to plot 
the values of E

O
F itself. T

his presentation can not tell you how
m

uch 
the real am

plitude this E
O

F represents.

O
ne w

ay to represent E
O

F’s am
plitude is to take the tim

e series of 
principal com

ponents for an E
O

F, norm
alize this tim

e series to unit 
variance, and then regress it against the original data set.

T
his m

ap has the shape of the E
O

F, but the am
plitude actually  

corresponds to the am
plitude in the real data w

ith w
hich this structure 

is associated.

If w
e have other variables, w

e can regress them
 all on the PC

 of
one 

E
O

F and show
 the structure of several variables w

ith the correct
am

plitude relationship, for exam
ple, S

ST
 and surface vector w

ind
fields can both be regressed on PC

s of SST
.

E
SS210B

P
rof. Jin-Y

i Y
u

Presentations of E
O

F –
C

orrelation M
ap

A
nother w

ay to present E
O

F is to correlate the principal 
com

ponent of an E
O

F w
ith the original tim

e series at each 
data point.

T
his w

ay, present the E
O

F structure in a correlation m
ap.

In this w
ay, the correlation m

ap tells you w
hat are the co-

varying part of the variable (for exam
ple, SST

) in the 
spatial dom

ain. 

In this presentation, the E
O

F has no unit and is non-
dim

ensional.
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H
ow

 M
any E

O
F

s S
hould W

e R
etain?

T
here are no definite w

ays to decide this. B
asically, w

e look atthe 
eigenvalue spectrum

 and decide:

(1)T
he 95%

 significance errors in the estim
ation of the eigenvalues is:

If the
eigenvalues

of adjacent E
O

F’s are closer together than this 
standard error, then it is unlikely that their particular structures are 
significant.

(2) O
r w

e can just look at  the slope of the eigenvalue spectrum
.

W
e w

ould look for a place in the
eigenvalue

spectrum
 w

here it levels 
off so that successive eigenvalues

are indistinguishable. W
e w

ould not 
consider any eigenvectors beyond this point as being special.

effective num
bers of degree of freedom

E
SS210B

P
rof. Jin-Y

i Y
u

A
n E

xam
ple

T
he first E

O
F

 is w
ell

separated from
 the rest 

E
O

F
 m

odes

(from
 H

artm
ann 2003)

E
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R
otated E

O
F

T
he orthogonal constrain on E

O
Fs

som
etim

e cause the spatial structures 
of E

O
FS

 to have significant am
plitudes all over the spatial dom

ain.

W
e can not get localized E

O
F structures.

T
herefore, w

e w
ant to relax the spatial orthogonal constrain 

on E
O

Fs (but still keep the tem
poral orthogonal constrain).

W
e apply the R

otated E
O

F analysis.

T
o perform

 the rotated E
O

F analysis, w
e still have to do the regular 

E
O

F first.

W
e then only keep a few

 E
O

F m
odes for the rotation.

W
e “rotated”

these selected few
 E

O
F

s to form
 new

 E
O

F
s (factors).

based on som
e criteria.

T
hese criteria determ

ine how
 “sim

ple”
the new

 factors are.

E
SS210B

P
rof. Jin-Y

i Y
u

C
riteria for the R

otation

B
asically, the criteria of rotating E

O
Fs

is to m
easure the 

“sim
plicity”

of the E
O

F structure. 

B
asically, sim

plicity of structure is supposed to occur 
w

hen m
ost of the elem

ents of the eigenvector are either of 
order one (absolute value) or zero, but not in betw

een.

T
here are tw

o popular rotation criteria:

(1)
Q

uartim
ax

R
otation

(2)
V

arim
ax

R
otation
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Q
uartim

ax and V
arim

ax R
otation

O
uartim

ax
R

otation

It seeks to rotate the original E
O

F m
atrix into a new

 E
O

F m
atrix for 

w
hich the variance of squared elem

ents of the eigenvectors is a 
m

axim
um

.

V
arim

ax R
otation (m

ore popular than the Q
uartim

ax rotation)

It seeks to sim
plify the individual E

O
F factors.

T
he criterion of sim

plicity of the com
plete factor m

atrix is defined as 
the m

axim
ization of the sum

 of the sim
plicities of the individual 

factors.

b
jp : the jth loading coefficient

of the pth E
O

F
 m

ode 

E
SS210B

P
rof. Jin-Y

i Y
u

R
eference F

or the F
ollow

ing E
xam

ples

T
he follow

ing few
 exam

ples are from
 a recent paper 

published on Journal of C
lim

ate:

D
om

m
enget, D

. and M
.L

atif
(2002): A

 C
autionary N

ote 
on

the Interpretation of E
O

F
. J. C

lim
ate, V

ol. 15, N
o.2, 

pages 216-225. 

E
SS210B

P
rof. Jin-Y

i Y
u

E
xam

ple 1:
N

orth A
tlantic 

SST
 V

ariability

R
otated
E

O
F

L
inear

R
egression

E
O

F

F
rom

D
om

m
enget, D

. and M
.L

atif(2002)
E

SS210B
P

rof. Jin-Y
i Y

u

E
xam

ple 2: Indian O
cean SST

 V
ariability

R
otated
E

O
F

L
inear

R
egression

E
O

F

F
rom

D
om

m
enget, D

. and M
.L

atif(2002)
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E
xam

ple 3:
SL

P V
ariability

(A
rctic O

scillation)

R
otated
E

O
F

L
inear

R
egression

C
ovariance-B

ased
E

O
F

C
orrelation-B

ased
E

O
F

F
rom

D
om

m
enget, D

. and M
.L

atif(2002)
E

SS210B
P

rof. Jin-Y
i Y

u

E
xam

ple 4:
L

ow
-D

im
ensional 

V
ariability 

(V
ariance B

ased)

R
otated E

O
F

L
inear R

egression

P
hysical M

odes

E
O

F

F
rom

D
om

m
enget, D

. and M
.L

atif(2002)

E
SS210B

P
rof. Jin-Y

i Y
u

E
xam

ple 5:
L

ow
-D

im
ensional 

V
ariability 

(C
orrelation B

ased)

R
otated E

O
F

L
inear R

egression

P
hysical M

odes

E
O

F

F
rom

D
om

m
enget, D

. and M
.L

atif(2002)
E

SS210B
P

rof. Jin-Y
i Y

u

C
orrelated S

tructures betw
een T

w
o V

ariables

SV
D

 analysis is also used to reveal the correlated spatial structures 
betw

een tw
o different variables or fields, such as the interaction 

structures betw
een the atm

osphere and oceans.

W
e begin by constructing the covariance m

atrix betw
een data m

atrices 
X

 and Y
 of size

M
xN

and
L

xN
, w

here M
and L

are the structure 
dim

ensions and N
 is the shared sam

pling dim
ension.

T
heir covariance m

atrix is:

or in m
atrix form

:
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A
n E

xam
ple –

S
V

D
 (SST

, SL
P)

Sea Surface T
em

perature (SST
)

Sea L
evel P

ressure (SL
P

)

E
SS210B

P
rof. Jin-Y

i Y
u

S
V

D
 A

nalysis of C
ovariance M

atrix

W
e then apply the S

V
D

 analysis to the covariance m
atrix and obtain:

U
:

T
he colum

ns of U
(M

xM
) are the colum

n space of C
X

Y
 and 

represent the structures in the covariance field of X
.

V
:

T
he colum

ns of V
 are the row

 space of C
X

Y
and are those 

structures in the Y
 space that explain the covariance m

atrix.

Σ
:

T
he singular values are dow

n the diagonal of the m
atrix Σ

. 
T

he sum
 of the squares of the singular values is equalto 

the sum
 of the squared covariances

betw
een the original 

elem
ents of X

 and Y
.

M
xL

M
xM

M
xL

L
xL

E
SS210B

P
rof. Jin-Y

i Y
u

W
hat D

o U
and V

m
ean?

T
he colum

n space (in U
) w

ill be structures in the 
dim

ension M
 that are orthogonal and have a partner in the 

row
 space of dim

ension L
 (in V

). 

T
ogether these pairs of vectors efficiently and

orthogonally
represent the structure of the covariance m

atrix. 

T
he hypothesis is that these pairs of functions represent 

scientifically m
eaningful structures that explain the 

covariance betw
een the tw

o data sets.

T
he 1

stE
O

F in U
 and the 1

stE
O

F in V
 together explain the 

m
ost of the covariance (correlation) betw

een tw
o variables 

X
 and Y

.
E

SS210B
P

rof. Jin-Y
i Y

u

Principal C
om

ponents

T
he principal com

ponents corresponding to the E
O

Fs in U
and V

can be obtained by projecting the E
O

Fs (singular 
vectors) onto the original data: 

T
he covariance betw

een each pair (kth) of the principal 
com

ponent should be equal to their corresponding singular 
value.
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Presentation of S
V

D
 V

ectors
Sim

ilar to the E
O

S
 analysis, the singular vectors are norm

alized
and 

non-dim
ensional, w

hereas the expansion coefficients have the 
dim

ensions of the original data.

T
o include am

plitude inform
ation in the singular vectors, w

e can
regress (ore correlate) the principal com

ponents of U
 or V

 w
ith the 

original data for this purpose.

(1) For exam
ple, norm

alize the principal com
ponent of U

.

(2) R
egress this norm

alized principal com
ponent w

ith the original data 
set Y

 to produce a “heterogeneous regression m
ap”. T

his m
ap show

s 
the am

plitude of covariance betw
een X

 and Y
.

(3) R
egress this norm

alized principal com
ponent w

ith the original data 
set X

 to produce a “hom
ogeneous m

ap”. T
his m

ap tells us the spatial 
structure of X

 that is m
ost correlated w

ith Y
.

E
SS210B

P
rof. Jin-Y

i Y
u

H
eterogeneous and H

om
ogeneous M

aps

H
eterogeneous regression m

aps: regress (or correlate) the expansion 
coefficient tim

e series of the left field w
ith the input data for the right 

field, or do the sam
e w

ith the expansion coefficient tim
e series

for the 
right field and the input data for the left field.

H
om

ogeneous regression m
aps: regress (or correlate) the expansion 

coefficient tim
e series of the left field w

ith the input data for the left 
field, or do the sam

e w
ith the right field and its expansion coefficients.

E
SS210B

P
rof. Jin-Y

i Y
u

A
n E

xam
ple –

S
V

D
 (SST

, SL
P)

Sea Surface T
em

perature (SST
)

Sea L
evel P

ressure (SL
P

)

E
SS210B

P
rof. Jin-Y

i Y
u

SV
D

 M
aps

H
eterogeneous C

orrelation
H

om
ogeneous C

orrelation
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E
SS210B

P
rof. Jin-Y

i Y
u

H
ow

 to U
se M

atlab to do SV
D

?

See pages 27-28 of the paper “A
 m

anual for 
E

O
F and SV

D
 analysis of clim

ate data”
by 

B
jornsson

and V
enegas.


