Part 4: Time Series||

0 Rotated EOF

4 Singular Vdue
Decomposition (SVD)
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Empirical Orthogonal Function Analysis

U Empirical Orthogonal Function (EOF) analysis attempts to
find arelatively small number of independent variables
(predictors; factors) which convey as much of the origina
information as possible without redundancy.

U EOF analysis can be used to explore the structure of the
variability within adata set in a objective way, and to
analyze relationships within a set of variables.

U EOF analysisis also called principal component analysis
or factor analysis.
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What Does EOF Analysis do?

Q In brief, EOF analysis uses a set of orthogona functions
(EOFs) to represent atime seriesin the following way:
N
Z(x,y. 1) = Y PC(1) EOF(x,y)
k=1

Q Z(x,y,t) isthe original time series as afunction of time (t)
and space (X, Y).

EOF(x, y) show the spatial structures (x, y) of the mgjor
factors that can account for the temporal variations of Z.

PC(t) isthe principal component that tells you how the
amplitude of each EOF varies with time.
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An Example

Leading EOF Mode

0 We apply EOF analysisto a
50-year long time series of
Pacific SST variation from a
model simulation.

Q The leading EOF mode shows
aENSO SST pattern. The EOF
analysistellsusthat ENSO isthe
Principal Component  |argest process that produce SST
variationsin this 50-year long

>>> > >> | model smulation.

1 QThe principal component tells
7 uswhich year hasaEl Nino or La
1 Nina, and how strong they are.
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Another View of the Rotation

(from Hartmann 2003)
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Rotation of Coordinates

O Suppose the Pecific SSTs are described by values at grid points: Xy, X,
Xg, ... Xy We know that the x;’ s are probably correlated with each other.

O Now, we want to determine anew set of independent predictors z to
describe the state of Pacific SST, which are linear combinations of x;:
M_ Hm:x._ +m_m.v\m + N;Hw +...+mH>%.N._S
Zy =ey1X] +épXxy + enxy ..t eyypys

Zyg = ey Xy FeynXy HeM3xy + L beypxyy

O Mathematically, we are rotating the old set of variable (x) to anew set
of variable (z) using a projection matrix (e):

N
R [EOF] & B

Determine the Projection Coefficients

O The EOF analysis asks that the projection coefficients are determined in
such away that:

(1) z, explains the maximum possible amount of the variance of the x’s;
(2) z, explains the maximum possible amount of the remaining variance
of thex's;

(3) so forth for the remaining Zs “ the orthogonal requirement in time!

O With these requirements, it can be shown mathematically that the
projection coefficient functions (g;) are the eigenvectors of the covariance
matrix of x's.

O Thefraction of thetotal variance explained by a particular eigenvector is
equal to theratio of that eigenvalue to the sum of all eigenvalues.
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Eigenvectors of a Symmetric Matrix

Covariance Matrix

O Any symmetric matrix R can be decomposed in the following way
through a diagonalization, or eigenanalysis:
wmm = \Hmmm
RE=LE

O Where E isthe matrix with the eigenvectors g asits columns, and L is
the matrix with the eigenvalues 4;, along its diagonal and zeros
elsewhere.

0 The set of eigenvectors, g, and associated eigenvalues, 4;, represent a
coordinate transformation into a coordinate space where the matrix R
becomes diagonal.
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O The EOF analysis has to start from cal culating the covariance matrix.

Q For our case, the state of the Pacific SST is described by values at
model grid points X;.

QO Let's assume the observational network in the Pacific has 10 gridsin
latitudinal direction and 20 gridsin longitudinal direction, then there
are 10x20=200 grid points to describe the state of pacific SST. So we
have 200 state variables:

X.(t),m=1,2,3,4, ..., 200
Q In our case, there are monthly observations of SSTs over these 200

grid points from 1900 to 1998. So we have N (12* 99=1188)
observations at each Xm:

X = Xn(t), M=1, 2, 3,4, ....., 200
n=1,2,3,4, ..., 1188
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Covariance Matrix — cont.

Eigenvectors of a Symmetric Matrix

U The covariance between two state variables X; and X; is:
N
¥r = ! e T Here N = 1188
R DI
j=1

O The covariance matrix is as following:
XHH XHN XHw eoooe XH_—SAH XH—S

Xoq X5, Xo3 eccoe XN_S.H XNZ_
qu wa wa eccce Xw__s.“— waz_ Here M= 200

Xz.pp Xz_.rm Xz_.rw ecoce Xz_.rz_.p Xz.rz_
XZ_L. XZ_N Xz_b (I} XZ;\_.H XZ_%_
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Q Any symmetric matrix R can be decomposed in the following way
through a diagonalization, or eigenanalysis:
wmm = \.F.mm
RE=LE

O Where E isthe matrix with the eigenvectors g asitscolumns, and L is
the matrix with the eigenvalues 4;, along its diagonal and zeros
elsewhere.

Q The set of eigenvectors, e, and associated eigenvalues, 4;, represent a
coordinate transformation into a coordinate space where the matrix R
becomes diagonal.
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Orthogonal Constrains

O There are orthogonal constrains been build in in the EOF
analysis:

(2) The principa components (PCs) are orthogonal in time.

There are no simultaneous temporal correlation between
any two principal components.

(2) The EOFs are orthogonal in space.
There are no spatia correlation between any two EOFs.

O The second orthogonal constrain is removed in the rotated
EOF analysis. _
n ESS210B
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Mathematic Background

U I don’t want to go through the mathematical details of EOF
analysis. Only some basic concepts are described in the
following few dids.

U Through mathematic derivations, we can show that the
empirica orthogona functions (EOFs) of atime series Z(X,
y, t) are the eigenvectors of the covarinace matrix of the

time series.

U The eigenvalues of the covariance matrix tells you the
fraction of variance explained by each individual EOF.
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Some Basic Matrix Operations

O A two-dimensional data matrix X:
N

X= .._\..._H H_H.ﬁ.a;.&mwmn.u_v:..g_.u_vz

O Thetranspose of this matrix is XT:
M

xT= w =X;; wherei=1,M; j=1,N

O Theinner product of these two matrices:
N M M
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How to Get Principal Components?

Q If we want to get the principal component, we project asingle
eigenvector onto the data and get an amplitude of this eigenvector at

eachtime, e™X:
XL X2 X3 e Xy
X1 Fz Y23 e Mon

T: €21 €31 - 35_ X31 ¥z X33 e Ny HT: 712 A3 e M:L
XMl XM2 XM3 - XMN

Q For example, the amplitude of EOF-1 at the first measurement timeis
calculated as the following:

Zjp=e€11X] ] tep)Xp) +e3 X3 ot ey Xy
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Using SVD to Get EOF& PC

U We can use Singular Vaue Decomposition (SVD) to get
EOFs, eigenvalues, and PC’ s directly from the data matrix,
without the need to calcul ate the covariance matrix from
the datafirst.

U If the data set is relatively small, this may be easier than
computing the covariance matrices and doing the
eigenanalysis of them.

Q If the sample sizeislarge, it may be computationally more

efficient to use the eigenvalue method.
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What isSvD?

Q Any mby n matrix A can be factored into
A=UEVL ————fnomalize pcs|

original time series E

Q The columns of U (mby m) are the EOFs

Q Thecolumns of V (n by n) are the PCs.

O Thediagonal values of X are the eigenvalues represent the amplitudes
of the EOFs, but not the variance explained by the EOF.

O The square of the eigenvalue from the SVD is equal to the eigenvalue
from the eigen analysis of the covariance matrix.

& S
N Prof. Jin-Yi Yu

An Example —with SVD method
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An Example — With Eigenanalysis
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Correlation Matrix

O Sometime, we use the correlation matrix, in stead of the covariance
matrix, for EOF analysis.

O For the same time series, the EOFs obtained from the covariance
matrix will be different from the EOFs obtained from the correlation
matrix.

O The decision to choose the covariance matrix or the correlation matrix
depends on how we wish the variance at each grid points (X;) are
weighted.

O In the case of the covariance matrix formulation, the elements of the
state vector with larger variances will be weighted more heavily.

O With the correlation matrix, all elements receive the same weight and
only the structure and not the amplitude will influence the principal
components.
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Correlation Matrix — cont.

U The correlation matrix should be used for the following
two cases:

(1) The state vector is a combination of things with different
units.

(2) The variance of the state vector varies from point to point
so much that this distorts the patterns in the data.
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Presentations of EOF — Variance Map

Presentations of EOF — Correlation Map

O There are several ways to present EOFs. The simplest way isto plot
the values of EOF itself. This presentation can not tell you how much
the real amplitude this EOF represents.

O Oneway to represent EOF s amplitude is to take the time series of
principal components for an EOF, normalize this time series to unit
variance, and then regressit against the original data set.

QO This map has the shape of the EOF, but the amplitude actually
corresponds to the amplitude in the real data with which this structure
is associated.

Q If we have other variables, we can regress them all on the PC of one
EOF and show the structure of several variables with the correct
amplitude relationship, for example, SST and surface vector wind
fields can both be regressed on PCs of SST.

[ 52108
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U Another way to present EOF isto correlate the principal
component of an EOF with the original time series at each
data point.

U Thisway, present the EOF structurein a correlation map.

d Inthisway, the correlation map tells you what are the co-
varying part of the variable (for example, SST) in the
spatial domain.

4 In this presentation, the EOF has no unit and is non-
dimensional.
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How Many EOFs Should We Retain?

O There are no definite ways to decide this. Basically, we look at the
eigenvalue spectrum and decide:

(1) The 95% significance errorsin the estimation of the eigenvaluesis:

AL =2/ Z*A\\\_ effective numbers of degree of freedom

If the eigenvalues of adjacent EOF' s are closer together than this
standard error, then it is unlikely that their particular structures are
significant.

(2) Or wecan just look at the slope of the eigenvalue spectrum.
We would look for a place in the eigenvalue spectrum where it levels
off so that successive eigenvalues are indistinguishable. We would not
consider any eigenvectors beyond this point as being special.
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An Example

Eigenvalue Spectrum: Norm= no

o Thefirst EOF iswell
b\mmum-mﬁma from therest

EOF modes

Eigenvalue
53

@
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(from Hartmann 2003) (o
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Rotated EOF

O Theorthogonal constrain on EOFs sometime cause the spatial structures
of EOFS to have significant amplitudes all over the spatial domain.

= We can not get localized EOF structures.

= Therefore, we want to relax the spatial orthogonal constrain
on EOFs (but still keep the temporal orthogonal constrain).

= We apply the Rotated EOF analysis.

QO To perform the rotated EOF analysis, we till have to do the regular
EOF first.

= We then only keep afew EOF modes for the rotation.

= We “rotated” these selected few EOFsto form new EOFs (factors).
based on some criteria.

= These criteria determine how “simple” the new factors are.
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Criteriafor the Rotation

U Basically, the criteria of rotating EOFs is to measure the
“simplicity” of the EOF structure.

U Basically, smplicity of structure is supposed to occur
when most of the elements of the eigenvector are either of
order one (absolute value) or zero, but not in between.

U There are two popular rotation criteria:
(1) Quartimax Rotation
(2) Varimax Rotation

e sso108
N Prof. Jin-Yi Yu




Quartimax and Varimax Rotation

O Ouartimax Rotation

It seeks to rotate the original EOF matrix into a new EOF matrix for
which the variance of squared elements of the eigenvectorsisa
maximum.

M m
2 = 1 MM B2 I®|m 2 U_.v“ thejth loading coefficient
[y P of the pth EOF mode

j=1p=1
O Varimax Rotation (more popular than the Quartimax rotation)

It seeksto simplify theindividual EOF factors.

M 2

\&
uwlwh.n_ ?wwﬁ \% Wb.wﬁ :__unrwv:sE

The criterion of simplicity of the complete factor matrix is defined as
the maximization of the sum of the simplicities of the EE&
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Reference For the Following Examples

U The following few examples are from a recent paper
published on Journal of Climate:
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EOF-1 (25.25 %)

Example 1:
North Atlantic
SST Variahility

EOF

[ENEEEREE]

Rotated \

EOF 2
regression with box
= 7
Hie K/ | 5
i o I S _ p
Linear RN
Regression " \
From Dommenget, D. and M. L atif (2002) -

_ Example 2: Indian Ocean SST Variability
EOF=1 (44.07 X) EOF=2 (10,32 %)
i) - . i 9] e e
EOF . ;
. VARIMAX—1 (18,41 %)

) . REc i
e\ ) -
Rotated S R ﬁw :
EOF / N
Linear -
Regression “




Example 3:
SLP Variability
(Arctic Oscillation)

(178 %)

eovariance-matrix EDF-2 {14.35 %)

MODE—1 (43.6%) MODE—2 (35.3%) MODE—3 {20.9%)

Example 4:

Low-Dimensional o | o]0 |0 P e
Variability -

A/\mﬁ iance mmév\ EOF— 1 (56.4%) EoF—2 (38.5%) EOF-3 (4.95%)

Physical Modes
< 1.08 Q —2.4 032

EOF

°
N
e
B
o
S
2

VARIMAX- T {51.4%) VARIMAX—2 {43.1%} VARIMAX—3 (5.39%)

DOHmﬁa mo—H 0.66 | 0.41 035 | 0.70 I —0.1 | =137 | -0

REGRESSIGN with BOX REGRESSIGN with BOX REGRESSICN with BOX

. . D74 0.74 81 0.81 2 — 2z
__._:mm: Regression _|\ ’

545 % 153 2521510505 1 15 2 25 3 13 4 £5 4

From Dommenget, D. and M. L atif (2002)

\ < ,
Covariance-Based -
EOF
Correlation-Based \ e o
EOF v
Rotated| ——"
EOF
Liner |——»
Regression
MODE—1 (43.8%) MODE-2 (35.3%) MODE—-3 (20.9%)
Example 5:
Low-Dimensiona o | of | | w0
Variability -
AOOWq.Q g_ o: wg\ EOF— 1 {(47.7%) EGF—2 (39.8%) EOF—3 (12.3%)
Physical M odes .
—0.0 —0.6 0.30 —0.5 0.36
EOF
VARIMAX— 1 {49.0%) VARIMAX—2 {41.2%) VARIMAX—3 (9.71%)
mOﬁmﬁa mO—H Io;m 0.03 0.07 0.21 I 017 .20
CORRELATION with BO: CORRELATION with BOX CORRELATIGN with BOX
R . .37 | 0.15 ¢.15 | 0.4 0.37 40
_ Linear Regression _|\| ’
<N T T T T

From Dommenget, D. and M. L atif (2002)

-1 -09-08-B7-0505-0A 03 82-0.10.1 02 0.3 D4 05 26 07 0B 09 1

Correlated Structures between Two Variables

O SVD analysisisalso used to reveal the correlated spatial structures
between two different variables or fields, such asthe interaction
structures between the atmosphere and oceans.

O We begin by constructing the covariance matrix between data matrices
X and Y of size MxN and LxN, where M and L are the structure
dimensionsand N is the shared sampling dimension.

Q Their covariance matrix is:

1

Mﬁh =Cxy orinmatrix form:
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An Example— SVD (SST, SLP)

NG

_ Sea Surface Temperature (SST) _

_mmm_.m,\m_ Pressure (SLP) _
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SVD Analysis of Covariance Matrix

What Do U and V mean?

QA The column space (in U) will be structuresin the
dimension M that are orthogonal and have a partner in the
row space of dimension L (in V).

U Together these pairs of vectors efficiently and orthogonally
represent the structure of the covariance matrix.

O The hypothesis is that these pairs of functions represent
scientifically meaningful structures that explain the
covariance between the two data sets.

O The 1 EOFin U and the 13 EOF in V together explain the
most of the covariance (correlation) between two variables
Xand.
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O Wethen apply the SVD analysisto the covariance matrix and obtain:

AR~

[MxL | [Mxm| [mxL] [Lxd]

Q U: The columns of U (MxM) are the column space of Cy and
represent the structuresin the covariance field of X.

V: The columns of V are the row space of Cy and are those
structuresin the Y space that explain the covariance matrix.

2! The singular values are down the diagonal of the matrix X.
The sum of the squares of the singular valuesis equal to
the sum of the squared covariances between the origin

elementsof X and Y. e cssoi08
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Principal Components

U The principal components corresponding to the EOFsin U
and V can be obtained by projecting the EOFs (singular
vectors) onto the original data:

X'=u"™x ; Y =vly

U The covariance between each pair (kth) of the principal
component should be equal to their corresponding singular
value.

* %
Of = XpVk

e sso108
N Prof. Jin-Yi Yu

10



Presentation of SVD Vectors

O Similar to the EOS analysis, the singular vectors are normalized and
non-dimensional, whereas the expansion coefficients have the
dimensions of the original data.

O Toinclude amplitude information in the singular vectors, we can
regress (ore correlate) the principal components of U or V with the
original data for this purpose.

O (1) For example, normalize the principal component of U.

(2) Regress this normalized principal component with the original data
set Y to produce a*heterogeneous regression map”. This map shows
the amplitude of covariance between X and Y.

(3) Regress this normalized principal component with the original data
set X to produce a “homogeneous map”. This map tells us the spatial

Heterogeneous and Homogeneous Maps

structure of X that is most correlated with Y.
. ESS210B
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O Heterogeneous regression maps: regress (or correlate) the expansion
coefficient time series of the left field with the input data for the right
field, or do the same with the expansion coefficient time series for the
right field and the input data for the left field.

Loyl 1 ¥ . 1
u, = —— or p=—— VY x.ph=—x.
el = Ny & Vi = Y

LI 1 W P
vip= X oF Vijj=—— WXk ==V X,
k Nop k jk Zﬁ.amu_u&m ik O._wuh\ k

O Homogeneous regression maps: regress (or correlate) the expansion
coefficient time series of the left field with the input data for the left
field, or do the same with the right field and its expansion coefficients.

1

Nog

%7 1 W 17
X or Hig=——2 X iXip =—X X
k jk No fiXik or als

up =
i=1
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An Example— SVD (SST, SLP)

™~

_ Sea Surface Temperature (SST) _
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_ Heter ogeneous Correlation _ _ Homogeneous Correlation _é




How to Use Matlab to do SVD?

U See pages 27-28 of the paper “A manual for
EOF and SVD analysis of climate data’ by
Bjornsson and Venegas.
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