

or factor analysis.

Mathematic Background

□ I don't want to go through the mathematical details of EOF analysis. Only some basic concepts are described in the following few slids.

(1) The principal components (PCs) are orthogonal in time.

There are no simultaneous temporal correlation between

any two principal components.

□ There are orthogonal constrains been build in in the EOF

Orthogonal Constrains

analysis:

- Through mathematic derivations, we can show that the empirical orthogonal functions (EOFs) of a time series Z(x, y, t) are the eigenvectors of the covarinace matrix of the time series.
- □ The eigenvalues of the covariance matrix tells you the fraction of variance explained by each individual EOF.

S SVD? iored into <u>normalized PCs</u> the EOFs the EOFs the PCs. eigenvalues represent the amplitudes re explained by the EOF. m the SVD is equal to the eigenvalue variance matrix. <u>Series 2000</u> <u>Bestano</u> <u>Bestano</u>	ESS.210B Prof. Jin-YI Yu	□ The square of the eigenvalue from the SVD is equal to the eigenvalue from the eigen analysis of the covariance matrix.	\square The diagonal values of Σ are the eigenvalues represent the amplitudes of the EOFs, <i>but not the variance explained by the EOF</i> .	\Box The columns of V (<i>n</i> by <i>n</i>) are the PCs.	original time series The columns of $U(m \text{ by } m)$ are the EOFs	\Box Any <i>m</i> by <i>n</i> matrix <i>A</i> can be factored into	What is SVD?
---	-----------------------------	--	--	--	--	--	--------------

dimensional angularity, it reality we can recover the data matrix by multiplying the upper large recover matrix times the prevents greater of the sequence that the the represent greater matrix. This is a sequence of the sequence that the the represent density of the regional data to be the sequence of the regional data to be the sequence of the regional data to be the regional data to	
>> second >> 201 (1 / 271) + 2002 1 2440 201 (1 / 271) + 2002 1 2400 201 (1 / 271) + 2002 1 2400 20	(from Hartmann 2003)
الاعلى المالية المالية مالية المالية ال المالية المالية	-
of the unified to first scheme of the of the unified uniform. The forming her unprovident status and the Ooph her for column a commungly if this contest and it gives the normalized interpret scheme of the amplitude of first equal instatute factors. The output of a contest of a	one structure Sunctava nai ore iemporal Suitava nan eegdanaali o'ihe spaniai elgowetter amtrik is segatizatani. The staguit va value carnitata spaniai and temporal singalar wattore are both of unit length. 12 12 12 12 12 12 12 12 12 12 12 12 12
na fer Anna an state i a statemente a su	1) = 0.8994 - 0.4472 0.4472 - 0.8944 Then the size of the sector which we have been used in the sector of the sect
	≫ (u, s, vj=sod(a) First U, which contains the spatial singutar vectors as columns.
	1= 2 4 -6 8 1 2 -3 4 Do SVD of that data matrix to find its component parts.
	≫ cker ≫ s=(24 - 6 & 12 - 34)
e – with SVD method	An Example

A= 2.0000 4.0000 -6.0000 8.0000 1.0000 2.0000 3.0000 4.0000
Finally recover the original data again by multiplying the eigenvector matrix(v) times the PC matrix(p).
י≫בייםייי" דיייים איזיים איזיים סיים סיים סיים איזיים
 >> [vd]=reigi() v contains the eigenvectors as columns. We get the mane normalized eigenvector in the first onluma X v = 0.8844 0.4872 1.8844 1.8845 1.8845 1.8846 1.8846 1.8846 1.8846 1.8846 1.8847 1.8846 1.8846 1.8846 1.8847 1.8846 1.8846 1.8847 1.8846 1.8847 1.8846 1.884
>> crafts' ======** ===========================
Now compute the convince matrix 44 $^{ m T}$. We won't even bother to remove the mean.
Fiort, enter the data matrix a, as before. ⇒ clear ⇒ a=124-48; 12-34j 2 4 -5 8 1 2 -3 4
An Example – With Eigenanalysis

Correlation-Based

EOF

Rotated EOF

Covariance-Based

EOF

(Arctic Oscillation) SLP Variability

Example 3:

ESS210B Prof. Jin-Yi Yu scientifically meaningful structures that explain the

 \square (1) For example, normalize the principal component of U.

(2) Regress this normalized principal component with the original data

Similar to the EOS analysis, the singular vectors are normalized and

Presentation of SVD Vectors

non-dimensional, whereas the expansion coefficients have the

 \Box To include amplitude information in the singular vectors, we can

dimensions of the original data.

regress (ore correlate) the principal components of \boldsymbol{U} or \boldsymbol{V} with the

original data for this purpose.

