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Purpose of Time Series Analysis

Some major purposes of the statistical analysis of time
seriesare

O To understand the variability of the time series.

O Toidentify the regular and irregular oscillations of the time series.

O To describe the characteristics of these oscillations.

O To understand the physical processes that give rise to each of these
oscillations.

To achieve the above, we need to:
QO Identify the regular cycle (autocovariance; harmonic analysis)
O Estimate the importance of these cycles (power spectral analysis)
Q Isolate or remove these cycles (filtering)
& B

Autocovariance Function

Q Originaly, autocorrel ation/autocovariance function is used to estimate
the dominant periodsin the time series.

O The autocovariance is the covariance of a variable with itself at some
other time, measured by atimelag (or lead) 7.

Q The autocovariance as a function of thetimelag (zand L):

thy =T
_ 1
L—Hh—-T

¢(7)

x(x' (¢ +1)dt
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Autocorrelation Function

O The Autocorrelation function is the normalized autocovariance
function:

rmy = S0

$(0)

O Symmetric property of the autocovarinace/autocorrelation function:

&(-1)=0(t) and r (-7)=r (7).
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Typical Autocorrelation Function

r (Figure from Panofsky and Brier 1968)

0 L, days

Q If thelag is small, the autocorrelation is still positive for many
geophysical variables.
O This means thereis some “persistence” in the variables.

Q Therefore, if there are N observations in sequence, they can not be
considered independent from each other.

O This means the degree of freedom isless than N.
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Degree of Freedom

QO Thetypica autocorrelation function tells us that data pointsin atime
series are not independent from each other.

=>» The degree of freedom is less than the number of data points (N).

0 Can we estimate the degree of freedom from the autocorrelation
function?

QO For atime series of red noise, it has been suggested that the degree of
freedom can be determined as following:
N* =N At/ (2T,).

Here T, is the e-folding decay time of autocorrelation (where
autocorrelation drops to 1/€). At isthe timeinterval between data

Q The number of degreesisonly half of the number of e-folding times of

hedaa n
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Amplitude

Amplitude

Example for Periodic Time Series
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(From Hartmann 2003)

Example — Red Noise

(From Hartmann 2003)
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QO The mathematic form of red noiseis as following:
2ty =ax(t— A +(1—a* 3 gy
a: the degree of memory from previous states (0 <a < 1)
€: random number
At: timeinterval between data points
x: standardized variable (mean =0; stand deviation = 1)
O It can be shown that the autocorrelation function of the red noiseis:
—At

T
= _ L) where T, = =%
1) exp( Te) where T, na

T, isthe e-folding decay time.
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Amplitude

Example — White Noise

(From Hartmann 2003)
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d If a=ointhered noise, then we have awhite noise:
X(t) = &(t) =» aseries of random numbers

Q@ The autocorrelation function of white noiseis:
r(t)=5(0) =» non-zero only at =0

O White noise has no prediction value.
Red noiseis useful for persistence forecasts.

ESS210B
Prof. Jin-YiYu

Example — Noise + Periodic

Time Series | (From Hartmann 2003)
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Harmonic Analysis

O Harmonic analysisis used to identify the periodic (regular) variationsin
geophysical time series.

O If we have N observations of (x;, y;), the time series y(t) can be
approximated by cosine and sine functions :

¥ t: Time

< t - t) T:Period of observation = NAt
N=A4+) |4 2k —+ B, sin2mk— :
=4, g{[ # COSTIR T+ Ssin T) A, B,: Cogfficients of kth harmonic

O How many harmonics (cosine/sine functions) do we need?

In general, if the number of observationsis N, the number of harmonic
equal to N/2 (pairs of cosine and sine functions).
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What Does Each Harmonic Mean?

Asan example, if thetime seriesis the monthly-mean temper ature from
January to December:

0 N=12, At =1 month, and T=12x At = 12 month = one year
Q 1s harmonic (k=1) =» annua harmonic (one cycle through the period)

sin[m]—i) - sin(?-;ﬁ - sm[z_ﬁ ‘ Period = NAt = 12 months ‘

Q 2nd harmonic (k=2) =» semi-annual harmonic (2 cycles through the period)
) no_ [21::.4:} : [211;] ‘ Period = 0.5NAt = 6 months ‘
sm{Zﬂ:k—} = sin| —— = sin| =—

7 N

2
O Last harmonic (k=N/2) =» the smallest period to be included.

Sm(znl) _ sm[ 2mm] Zm ‘ Period = 2N =2 months ‘

N £,
NA Nyqulﬂ fra}]ue']c’y n Bror i Yu




Aliasing

U The variances at frequency
higher than the Nyquist
frequency (k>k*) will be
“diased” into lower
frequency (k<k*) in the

power spectrum. Thisisthe
so-called “aliasing problem”.

U Thisisaproblem if there are

True Period = 2/3 At large variances in the data
Aliased Period = 2 At that have frequencies smaller
than k*.
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Orthogonality

Q In Vector Form:
n Vector Form (1) Theinner product of

orthogonal vectors or functions

N

(f.g)= eg, =0 X

& z{"r” En iszero.
—

\ (2) Theinner product of an
Q In Continuous Function Form orthogonal vector or function
with itself isone.

L
(o) = Lf(X)g(X)dx -0

O A Set of Orthogonal Functions f, (x

Oifm#n

L
U= [ st ={ 7
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Multiple Regression (shown before)

O If wewant to regress y with more than one variables (X, X, Xg,.....X,):
y=a,+ax +ax)x; +...+apxy

Q After perform the least-square fit and remove means from all variables:

alxlz +apxyxy +a3xX X3+ + Ay XX = XY

ajx|x; +a2x§ +a@3x9x3 + . + Ay X2 Xy = X2¥

J— J— 5 J—
a x| x3 +(72X2X3 +(13X3 +....+a"x3x” =Xy

O Solve the following matrix to obtain the regression coefficients: a,, a,,

g, Agr--eery B
5 — o

X oxx; xXx; . [a Xy
—_— _2 —_— —
Xp¥|  X)  XpXg . ap - X2y
on mn xS |3y
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Fourier Coefficients

O Because of the orthogonal property of cosine and sine
function, al the coefficients A and B can be computed
independently (you don’t need to know other A;_,3 2 O
Bi=1 2, 3.2 N Order to get A, for example).

O Thisisamultiple regression case. Using least-square fit,
we can show that:

1 N
Ag = ﬁzyi Ap :%23’5 cos2mkiAtfT

- i=1
Bo =0 For k=1,N/2 N
N . :
1 ) By==2% yysin2rkiafT
Ayp = N%y, cos ANIAST NE

(no By, component)
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Amplitude of Harmonics

Q Using the following relation, we can combine the sine and cosine
components of the harmonic to determine the amplitude of each harmonic.

AcosB® + Bsin® = Ccos(8-8)
C?=A2+B? =» (amplitude)? of the harmonic

6, = the time (phase) when this harmonic has its largest amplitude

O With this combined form, the harmonic analysis of y(t) can be rewritten as:

A
2
= 2nk TNt
W=7+ kz‘lck cos{?(r - fk)} +Ayp cos[?)
Cl=A} + B and 1, = ——tan~!| B
P 4
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Fraction of Variance Explained by Harmonics

O What is the fraction of the variance (of y) explained by asingle
harmonic?

O Remember we have shown in the regression analysis that the fraction
isequal to the square of the correlation coefficient between this
harmonic and y:

2 iy
rnx) = FrvE

QO It can be shown that this fraction is

2 2
P2 - oy Uit B0 05% G

for k=1,2,3, ..., N21
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How Many Harmonics Do We Need?

d Since the harmonics are al uncorrel ated, no two harmonics
can explain the same part of the variance of y.

Q In other words, the variances explained by the different
harmonics can be added.

O We can add up the fractions to determine how many

harmonics we need to explain most of the variationsin the
timeseriesof y.
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Time Domain .vs. Frequency Domain

ti e frequency

Fourler Transform

f (t) Inverse Fourier TranSfOl’m F (W)
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Power Spectrum

(Figure from Panofsky and Brier 1968)
r‘ Q By plotting the amplitude of the

harmonics as a function of k, we
produce the “power spectrum” of

[}_‘ _Ii'_ thetime seriesy.
|r‘: Hh Q The meaning of the spectrum is
I“ i ,1 that it shows the contribution of
|| LI each harmonic to the total
variance.

Q If tistime, then we get the
frequency spectrum.

Problems with Line Spectrum

TheC2isa“line spectrum” at a specific frequency and wavenumber
(k). Wearenot interested in these line spectra. Here are the reasons:

QO Integer values of k have no specific meaning. They are determined
based on the length of the observation period T (=NAt):
k =(0, 1, 2, 3,..N/2) cycles during the period T.

O Since we use N observations to determine a mean and N/2 line spectra,
each line spectrum has only about 2 degrees of freedom. With such
small dof, the line spectrum is not likely to be reproduced from one
sampling interval to the other.

QO Also, most geophysical “signals’ that we are interested in and wish to
study are not truly “periodic”. A lot of them are just “quasi-periodic”,
for example ENSO. So we are more interested in the spectrum over a
“band” of frequencies, not at a specific frequency.

& B

| Smooth spectrum | | line spectrum | Q If tisdistance, then we get the
wavenumber spectrum.
H ESS210B
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Continuous Spectrum
AD(K) 0 So we need a* continuous spectrum”

that tells us the variance of y(t) per unit
frequency (wavenumber) interval:

__ kF
y? = [@(k)dk
0

k

»= O k* iscalled the “Nyquist frequency”,
which has a frequency of one cycle per
2At. (Thisis the k=N/2 harmonics).

K, K, K

O The Nyquist frequency is the highest
frequency can be resolved by the given

Nyquist frequency spacing of the data point.
n ESS210B
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Aliasing

4 The variances at frequency

higher than the Nyquist
frequency (k>k*) will be
“diased” into lower
frequency (k<k*) in the

power spectrum. Thisisthe
so-caled “aliasing problem”.

U Thisisaproblem if there are

TruePeriod = 2/3 At large variances in the data
Aliased Period = 2 At that have frequencies smaller
than k*.

ESS210B
Prof. Jin-Yi Yu




How to Calculate Continuous Spectrum

OTherearetwo waysto calculate the continuous spectrum:

(2)(1) Direct Method (use Fourier transform)
(2)(2) Time-Lag Correlation M ethod (use autocorrelation function)

(1) Direct M ethod (a mor e popular method)

Step 1: Perform Fourier transform of y(t) to get C3(k)
Step 2: smooth C2(k) by averaging afew adjacent frequencies together.
or by averaging the spectra of afew time series together.

=> both ways smooth aline spectrum to a continuous spectrum and
increase the degrees of freedom of the spectrum.
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Examples

O Example 1 —smooth over frequency bands

A time series has 900 days of record. If we do a Fourier analysis then
the bandwidth will be 1/900 day?, and each of the 450 spectral
estimates will have 2 degrees of freedom. If we averaged each 10
adjacent estimates together, then the bandwidth will be 1/90 day* and
each estimate will have 20 d.o.f.

O Example 2 — smooth over spectra of several time series

Suppose we have 10 time series of 900 days. If we compute spectra for
each of these and then average the individua spectral estimates for
each frequency over the sample of 10 spectra, then we can derive a
spectrum with abandwidth of 1/900 days?* where each spectral

estimate has 20 degrees of freedom.
n rar i
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Time-Lag Correlation Method

(2) Time-Lag Correlation M ethod
It can be shown that the autocorrel ation function and power spectrum
are Fourier transform of each other. So we can obtain the continuous
spectrum by by performing harmonic analysis on the lag correlation
function ontheinterval -T, <t <T,.

T

Resolution of Spectrum - Bandwidth

®(k)= [r(r)e*Tar
-1 ®(k): Power Spectrum in frequency (k)
r(t): Autocorrelation in timelag (t)

k‘
Hr)= ﬁ J@(k)*Tar
—kC
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O Bandwidth (Af)= width of the frequency band =» resolution of spectrum
Af = 1/N (cycle per time interval)

Q For example, if atime series has 900 monthly-mean data:
bandwidth = 1/900 (cycle per month).
Nyquist frequency = % (cycle per month)
Total number of frequency bands = (0-Nyquist frequency)/bandwidth
= (0.5)/(1/900) = 450 = N/2
Each frequency band has about 2 degree of freedom.

QO If we average severa bands together, we increase the degrees of freedom
but reduce the resolution (larger bandwidth).
n ESS210B
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Bandwidth in Time-Lag Correlation Method

An Example

Q With the time-lag correlation method, the bandwidth of the
power spectrum is determined by the maximum time lag (L)
used in the calculation:

Af = 1 cycle/(2LAY).

O Number of frequency band = (Nyquist frequency — 0) / Af
=AY/ (2L AY)L=L

O Number of degrees of freedom = N/(number of bands)

=N/L
n ESS210B
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O For red noise, we know:
r(t)=exp(-t/Ty) = T.=-t/In(r(t))

4 If we know the autocorrelation at t=At, then we can find
out that

B tnr(aq] ;X<

Q For example:

nan | <oa6| 03 0.5 0.7 0.9

N'N 1 0.6 035 | 0.18 | 0.053

(From Hartmann 2003) n ESS2108
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Example — Spectrum of Red Noise

O Let’suse the Parseva’ s theory to cal cul ate the power spectrum of red
noise.

O We already showed that the autocorrelation function of the red noiseis:
—At

T
r{t) = exp| — | where T, = —
® p( Te) e T Tha
O By performing the Fourier transform of the autocorrelation function,
we obtain the power spectrum of the red noise:

oo

(W) = Iexp(?]e_imd't LY
€

—co
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Power Spectrum of Red Noise

D)

Small T

-
»
@

(From Hartmann 2003)
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Significance Test of Spectral Peak

{w)

o is the "background” spectrum,
@ which forms the null hypothesis

o
Yy
(From Hartmann 2003) w

O Null Hypothesis: the time seriesis not periodic in the region of
interest, but simply noise.

O We thus compare amplitude of a spectral peak to a background value
determined by ared noisefit to the spectrum.

QO UseF-Test: e @,
®,
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Calculate the Red Noise Spectrum for Test

QO The red noise power spectrum can be calculated using the following
formula:

1-p? Power of the Tested Spectrum
Plh,p, M) = P

7y 2 X -
1-2p Cos[ﬁj+p Power of the Red Noise

Q P(h, p, M) isthe power spectrum at frequency h
h=0,1,23, ..,M
p = autocorrelation coefficient at onetimelag

O We would normally obtain the parameter p from the original time
series as the average of the one-lag autocorrelation and the square root
of the two-lag autocorrelation.

QO We then make the total power (variance) of this red noise spectrum
equal to the total power (variance) of the power spectrum we want to

test.
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How To Plot Power Spectrum?

Data Window

ay Inem,
jcb(m)dmz Imdb(m)a’lnm
o) In oy
| Linear Sc)a{e | |Lo§qrithmic Scalel
» @al) N\ secionie
. o o ®

Inw, In@, Ina*

QO The Fourier transform obtains the “true”’ power spectrum from atime
series with ainfinitetime domain. In real cases, thetime serieshasa
finite length.

Q Itislikethat we obtain the finite time series from the infinite time

domain through a“data window:

/

X Infinite time series
Data Window

0 T
O How does the data window affect the power spectrum?
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Parseval’ s Theorem

O Thistheory isimportant for power spectrum analysis and for time
filtering to be discussed later.

Q Thetheory states that the square of the time series integrated over time
isequal to the square (inner product) of the Fourier transform
integrated over frequency:

[0 = [B@F @)4d@)

O Here F,(w)/F,(®) isthe Fourier transform of f1(t)/f2(t).
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Power Spectrum of Finite Sample

Q If theinfinite time seriesis f(t) and the sample time seriesis g(t), then
the power spectrum calculated from the sampleis related to the true
spectrum in the following way:

G(w) = I a(tye ™ dt = _[ finwne™ dr

O Based on the “ Convolution Theory”

[os0ea-— [A@po-o)m

Q The sample spectrum is not equal to the true spectrum but weighted by
the spectrum of the data window used:

oo

G(w) = 2l j F(o)W (0 - @)do

1
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Square Data Windows

Bartlett Window

-T/2

Q Squaredatawindow is:
w(t) = 1 within the window domain
=0 everywhere else.

O The datawindow has the following weighting effects on the true
spectrum:

0
w (m):% i S(m—ﬁ)sin(m—ﬁ)g

“o ESS2108
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The Weighting Effect of Square Window

| Response Function of Square Window | Q The square window smooth the true
spectrum.

12

(":riorln Hartmann 2'0(‘)3|) ====T Q The degree of the smoothing is
L - 10 ] determined by the window length (T).

=
=

Q The shorter the window length, the
stronger the smoothing will be.

4 In addition to the smoothing effect,
datawindow also cause “spectral
leakage”.

Q Thisleakage will introduce spurious

oscillations at higher and lower
frequencies and are out of phase with

Spectral Leakage. Frequency ' the true oscillation.

e
o

=
=

Response Function

=
i

04
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We Wish the Data Window Can..

Tapered Data Window

O Produce anarrow centra lobe
=> requirealarger T (thelength of datawindow)

Produce ainsignificant side lobes
=> require a smooth data window without sharp corners

O A rectangular or Bartlett window leaves the time series
undistorted, but can seriously distort the frequency
spectrum.

A tapered window distorts the time series but may yield a
more representative frequency spectrum.
n ESS210B
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0 How do we reduce the side lobes associated with the data window?

=> A tapered data window.
Square Window WO Wo)
./ .
Tapered Window "7 W)

(from Hartmann 2003) H
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Bartlett Window

Q Bartlett (square or rectangular) window

W(r)_{% 0<f<T

0 B

. (@l

25“‘[7] wT

w{w)= wr =25inc[£)
2

4 Thisisthe most commonly used window, but we use it without
knowing we are using it.

U The Bartlett window has a serious side |obe problem. Frequencies that
are outside the range of frequencies actudly resolved can have too
strong an influence on the power spectra at the frequencies resolved.
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Hanning Window (Cosine Bell)

Q The cosine bell window is perhaps the most frequently used window in
meteorological applications.

{l(lJrcosﬂ) ;0< |{| <T/2
w(t)= T
0

i=T/2

e (2] o 1) o (2]
/ ~

Thesameas Partially cancel out Side
Bartlett window lobs, but also Broaden
thecentral lobe
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Filtering of Time Series

Response Function

4 Timefiltering technique is used to remove or to retain variations at
particular bands of frequencies from the time series.

Q There are three types of filtering:

(1) High-Pass Filtering
keep high-frequency parts of the variations and remove low-
frequency parts of the variations.

(2) Low-Pass Filtering
keep low-frequency and remove high-frequency parts of the
variations.

(3) Band-Pass Filtering
remove both higher and lower frequencies and keep only certain
frequency bands of the variations.
& B

Q Timefilters are the same as the data window we have discussed earlier.

Gy = [ewe™a - [nnwanea

Q By performing Fourier transfor;W' filter or datawindow

Glow)= Flo) W)

Q The ration between the filtered and original power spectrum is called

the “response function”:
R(&J) =@

Flw)< *! original power spectrum |

Q If R(w)=1 => theoriginal amplitude at frequency o is kept.
R(w)=0 =» the original amplitude at frequency o is filtered out.
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power spectrum after filtering |

An Perfect Filter

O Theided filter should have aresponse of 1 over the
frequency bands we want to keep and aresponse of zero
over the frequency bands we want to remove:

I A Perfect Square Response Function I

1.0

R(w)
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A Sharp-Cutoff Filter

1 E R(eNL) |
F R(19NL) [
s 08 F R(49NL) 5
g .
o 0.6 ]
=4 -
5 04 ]
= ] ]
02 F ; =
3 L\ X :

9
TR B ]
oF FRA By
0.2l P B,

0 0.1 0.2 0.3 04 0.5

(From Hartmann 2003) ~ Frequency
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