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Part 3: Time Series I

Autocorrelation Function

Harmonic Analysis

Spectrum Analysis

Data Window

Significance Tests

(Figure from Panofsky and Brier 1968)
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Purpose of Time Series Analysis

Some major purposes of the statistical analysis of time 
series are:
To understand the variability of the time series.

To identify the regular and irregular oscillations of the time series.

To describe the characteristics of these oscillations.

To understand the physical processes that give rise to each of these 
oscillations.

To achieve the above, we need to:
Identify the regular cycle (autocovariance; harmonic analysis)

Estimate the importance of these cycles (power spectral analysis)

Isolate or remove these cycles (filtering)

ESS210B
Prof. Jin-Yi Yu

Autocovariance Function

Originally, autocorrelation/autocovariance function is used to estimate 
the dominant periods in the time series.

The autocovariance is the covariance of a variable with itself at some 
other time, measured by a time lag (or lead) τ.

The autocovariance as a function of the time lag (τ and L):
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Autocorrelation Function

The Autocorrelation function is the normalized autocovariance
function:

Symmetric property of the autocovarinace/autocorrelation function:

φ(-τ)=φ(τ) and r(-τ)=r(τ).
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Typical Autocorrelation Function

If the lag is small, the autocorrelation is still positive for many 
geophysical variables.

This means there is some “persistence” in the variables.

Therefore, if there are N observations in sequence, they can not be 
considered independent from each other.

This means the degree of freedom is less than N.

(Figure from Panofsky and Brier 1968)
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Degree of Freedom
The typical autocorrelation function tells us that data points in a time 
series are not independent from each other.

The degree of freedom is less than the number of data points (N).

Can we estimate the degree of freedom from the autocorrelation 
function?

For a time series of red noise, it has been suggested that the degree of 
freedom can be determined as following:

N* = N ∆t / (2Te).

Here Te is the e-folding decay time of autocorrelation (where 
autocorrelation drops to 1/e). ∆t is the time interval between data.

The number of degrees is only half of the number of e-folding times of 
the data.
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Example for Periodic Time Series

Time Series Autocorrelation Function

(From Hartmann 2003) ESS210B
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Example – Red Noise

The mathematic form of red noise is as following:

a: the degree of memory from previous states (0 < a < 1)
ε: random number
∆t: time interval between data points
x: standardized variable (mean =0; stand deviation = 1)

It can be shown that the autocorrelation function of the red noise is:

Te is the e-folding decay time.

(From Hartmann 2003)
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Example – White Noise

If a = o in the red noise, then we have a white noise:

x(t) = ε(t) a series of random numbers

The autocorrelation function of white noise is:

r(τ)=δ(0) non-zero only at τ=0

White noise has no prediction value.

Red noise is useful for persistence forecasts.

(From Hartmann 2003)
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Example – Noise + Periodic
Time Series

Autocorrelation Function

(From Hartmann 2003)
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Harmonic Analysis

Harmonic analysis is used to identify the periodic (regular) variations in 
geophysical time series. 

If we have N observations of (xi, yi), the time series y(t) can be 
approximated by cosine and sine functions :

How many harmonics (cosine/sine functions) do we need?

In general, if the number of observations is N, the number of harmonic 
equal to N/2 (pairs of cosine and sine functions).

t: Time
T: Period of observation = N∆t
Ak, Bk: Coefficients of kth harmonic
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What Does Each Harmonic Mean?
As an example, if the time series is the monthly-mean temperature from 
January to December:

N=12, ∆t =1 month, and T=12× ∆t = 12 month = one year

1s harmonic (k=1) annual harmonic (one cycle through the period)

2nd harmonic (k=2) semi-annual harmonic (2 cycles through the period)

Last harmonic (k=N/2) the smallest period to be included.

Period = N∆t = 12 months

Period = 0.5N∆t = 6 months

Period = 2∆t = 2 months

Nyquist frequency
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Aliasing

The variances at frequency 
higher than the Nyquist 
frequency (k>k*) will be 
“aliased” into  lower 
frequency (k<k*) in the 
power spectrum. This is the 
so-called “aliasing problem”.

This is a problem if there are 
large variances in the data 
that have frequencies smaller 
than k*.

True Period = 2/3 ∆t
Aliased Period = 2 ∆t
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Orthogonality

In Vector Form:

In Continuous Function Form

A Set of Orthogonal Functions fn(x)

(1) The inner product of 
orthogonal vectors or functions 
is zero.

(2) The inner product of an 
orthogonal vector or function 
with itself is one.
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Multiple Regression (shown before)

If we want to regress y with more than one variables (x1, x2, x3,…..xn):

After perform the least-square fit and remove means from all variables:

Solve the following matrix to obtain the regression coefficients: a1, a2, 
a3, a4,….., an:
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Fourier Coefficients

Because of the orthogonal property of cosine and sine 
function, all the coefficients A and B can be computed 
independently (you don’t need to know other Ai=2,3,…N/2 or 
Bi=1, 2, 3…N/2 in order to get A1, for example).

This is a multiple regression case. Using least-square fit, 
we can show that:

For k=1,N/2  

(no BN/2 component)
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Amplitude of Harmonics
Using the following relation, we can combine the sine and cosine
components of the harmonic to determine the amplitude of each harmonic. 

With this combined form, the harmonic analysis of y(t) can be rewritten as:

C2=A2+B2  (amplitude)2 of the harmonic
θ0 the time (phase) when this harmonic has its largest amplitude
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Fraction of Variance Explained by Harmonics

What is the fraction of the variance (of y) explained by a single 
harmonic?

Remember we have shown in the regression analysis that the fraction 
is equal to the square of the correlation coefficient between this 
harmonic and y:

It can be shown that this fraction is 

r2
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How Many Harmonics Do We Need?

Since the harmonics are all uncorrelated, no two harmonics 
can explain the same part of the variance of y.

In other words, the variances explained by the different 
harmonics can be added.

We can add up the fractions to determine how many 
harmonics we need to explain most of the variations in the 
time series of y.

ESS210B
Prof. Jin-Yi Yu

Time Domain .vs. Frequency Domain

f(t) F(w)
Fourier Transform

Inverse Fourier Transform

Time Series Power Spectrum

time frequency
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Power Spectrum

By plotting the amplitude of the 
harmonics as a function of k, we 
produce the “power spectrum” of 
the time series y.

The meaning of the spectrum is 
that it shows the contribution of 
each harmonic to the total 
variance.

If t is time, then we get the 
frequency spectrum.

If t is distance, then we get the
wavenumber spectrum.

smooth spectrum line spectrum

(Figure from Panofsky and Brier 1968)
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Problems with Line Spectrum

Integer values of k have no specific meaning. They are determined 
based on the length of the observation period T (=N∆t):
k = (0, 1, 2, 3,..N/2) cycles during the period T.

Since we use N observations to determine a mean and N/2 line spectra, 
each line spectrum has only about 2 degrees of freedom. With such 
small dof, the line spectrum is not likely to be reproduced from one 
sampling interval to the other.

Also, most geophysical “signals” that we are interested in and wish to 
study are not truly “periodic”. A lot of them are just “quasi-periodic”, 
for example ENSO. So we are more interested in the spectrum over a 
“band” of frequencies, not at a specific frequency.

The Ck
2 is a “line spectrum” at a specific frequency and wavenumber

(k). We are not interested in these line spectra. Here are the reasons:
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Continuous Spectrum

So we need a “continuous spectrum”
that tells us the variance of y(t) per unit 
frequency (wavenumber) interval:

k* is called the “Nyquist frequency”, 
which has a frequency of one cycle per 
2∆t. (This is the k=N/2 harmonics).

The Nyquist frequency is the highest 
frequency can be resolved by the given 
spacing of the data point.

k*k1 k2

Φ(k)

k

Nyquist frequency
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Aliasing

The variances at frequency 
higher than the Nyquist 
frequency (k>k*) will be 
“aliased” into  lower 
frequency (k<k*) in the 
power spectrum. This is the 
so-called “aliasing problem”.

This is a problem if there are 
large variances in the data 
that have frequencies smaller 
than k*.

True Period = 2/3 ∆t
Aliased Period = 2 ∆t
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How to Calculate Continuous Spectrum

(1) Direct Method (a more popular method)

Step 1: Perform Fourier transform of y(t) to get C2(k)

Step 2: smooth C2(k) by averaging a few adjacent frequencies together.

or by averaging the spectra of a few time series together.

both ways smooth a line spectrum to a continuous spectrum and 
increase the degrees of freedom of the spectrum.

There are two ways to calculate the continuous spectrum:

(1)(1) Direct Method  (use Fourier transform)
(2)(2) Time-Lag Correlation Method (use autocorrelation function)
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Examples

Example 1 – smooth over frequency bands

A time series has 900 days of record. If we do a Fourier analysis then 
the bandwidth will be 1/900 day-1, and each of the 450 spectral 
estimates will have 2 degrees of freedom. If we averaged each 10
adjacent estimates together, then the bandwidth will be 1/90 day-1 and 
each estimate will have 20 d.o.f.

Example 2 – smooth over spectra of several time series

Suppose we have 10 time series of 900 days. If we compute spectra for 
each of these and then average the individual spectral estimates for 
each frequency over the sample of 10 spectra, then we can derive a 
spectrum with a bandwidth of 1/900 days-1 where each spectral  
estimate has 20 degrees of freedom.
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Time-Lag Correlation Method

(2) Time-Lag Correlation Method
It can be shown that the autocorrelation function and power spectrum 
are Fourier transform of each other. So we can obtain the continuous 
spectrum by by performing harmonic analysis on the lag correlation 
function on the interval -TL ≤ τ ≤ TL.

Φ(k): Power Spectrum in frequency (k)
r(τ): Autocorrelation in time lag (τ)
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Resolution of Spectrum - Bandwidth

Bandwidth (∆f)= width of the frequency band resolution of spectrum

∆f = 1/N (cycle per time interval)

For example, if a time series has 900 monthly-mean data:

bandwidth = 1/900 (cycle per month).

Nyquist frequency = ½ (cycle per month)

Total number of frequency bands = (0-Nyquist frequency)/bandwidth

= (0.5)/(1/900) = 450 = N/2 

Each frequency band has about 2 degree of freedom.

If we average several bands together, we increase the degrees of freedom 
but reduce the resolution (larger bandwidth).
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Bandwidth in Time-Lag Correlation Method

With the time-lag correlation method, the bandwidth of the 
power spectrum is determined by the maximum time lag (L) 
used in the calculation:

∆f = 1 cycle/(2L∆t).

Number of frequency band = (Nyquist frequency – 0) / ∆f 

= (2 ∆t)-1 / (2L ∆t)-1 = L

Number of degrees of freedom = N/(number of bands)

= N/L
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An Example

For red noise, we know:

r(τ)=exp(-τ/Te) Te = - τ / ln(r(τ))

If we know the autocorrelation at τ=∆t, then we can find 
out that

For example:

(From Hartmann 2003)
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Example – Spectrum of Red Noise

Let’s use the Parseval’s theory to calculate the power spectrum of red 
noise.

We already showed that the autocorrelation function of the red noise is:

By performing the Fourier transform of the autocorrelation function, 
we obtain the power spectrum of the red noise: 
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Power Spectrum of Red Noise

(From Hartmann 2003)
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Significance Test of Spectral Peak

Null Hypothesis : the time series is not periodic in the region of 
interest, but simply noise. 

We thus compare amplitude of a spectral peak to a background value 
determined by a red noise fit to the spectrum.

Use F-Test:

(From Hartmann 2003)

ESS210B
Prof. Jin-Yi Yu

Calculate the Red Noise Spectrum for Test

The red noise power spectrum can be calculated using the following 
formula:

P(h, ρ, M) is the power spectrum at frequency h
h = 0, 1, 2, 3, …., M
ρ = autocorrelation coefficient at one time lag

We would normally obtain the parameter ρ from the original time 
series as the average of the one-lag autocorrelation and the square root 
of the two-lag autocorrelation.

We then make the total power (variance) of this red noise spectrum 
equal to the total power (variance) of the power spectrum we want to 
test.

×
Power of the Tested Spectrum

Power of the Red Noise
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How To Plot Power Spectrum?

ω*ω1 ω2

Φ(ω)

k

lnω*lnω1 lnω2

ωΦ(k)

Linear Scale Logarithmic Scale

stretch low freq
contract high freq
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Data Window

The Fourier transform obtains the “true” power spectrum from a time 
series with a infinite time domain. In real cases, the time series has a 
finite length.

It is like that we obtain the finite time series from the infinite time 
domain through a “data window:

How does the data window affect the power spectrum?

Infinite time series

0 T

finite sample

Data Window
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Parseval’s Theorem

This theory is important for power spectrum analysis and for time 
filtering to be discussed later.

The theory states that the square of the time series integrated over time 
is equal to the square (inner product) of the Fourier transform 
integrated over frequency:

Here F1(ω)/F2(ω) is the Fourier transform of f1(t)/f2(t). 
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Power Spectrum of Finite Sample
If the infinite time series is f(t) and the sample time series is g(t), then 
the power spectrum calculated from the sample is related to the true 
spectrum in the following way:

Based on the “Convolution Theory”

The sample spectrum is not equal to the true spectrum but weighted by 
the spectrum of the data window used:
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Square Data Windows

Square data window is:

w(t) = 1 within the window domain 

= 0 everywhere else.

The data window has the following weighting effects on the true 
spectrum:

-T/2 0 T/2

1.0
Bartlett Window
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The Weighting Effect of Square Window

The square window smooth the true 
spectrum.

The degree of the smoothing is 
determined by the window length (T).

The shorter the window length, the 
stronger the smoothing will be.

In addition to the smoothing effect, 
data window also cause “spectral 
leakage”.

This leakage will introduce spurious 
oscillations at higher and lower 
frequencies and are out of phase with 
the true oscillation. 

Response Function of Square Window

Spectral Leakage

(From Hartmann 2003)
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We Wish the Data Window Can…

Produce a narrow central lobe 
require a larger T (the length of data window)

Produce a insignificant side lobes 
require a smooth data window without sharp corners

A rectangular or Bartlett window leaves the time series 
undistorted, but can seriously distort the frequency 
spectrum.

A tapered window distorts the time series but may yield a 
more representative frequency spectrum.
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Tapered Data Window

How do we reduce the side lobes associated with the data window?

A tapered data window.

(from Hartmann 2003)
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Bartlett Window

Bartlett (square or rectangular) window

This is the most commonly used window, but we use it without 
knowing we are using it.

The Bartlett window has a serious side lobe problem. Frequencies that 
are outside the range of frequencies actually resolved can have too 
strong an influence on the power spectra at the frequencies resolved.
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Hanning Window (Cosine Bell)

The cosine bell window is perhaps the most frequently used window in 
meteorological applications. 

The same as
Bartlett window

Partially cancel out Side 
lobs, but also  Broaden 
the central lobe
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Filtering of Time Series

Time filtering technique is used to remove or to retain variations at 
particular bands of frequencies from the time series.

There are three types of filtering:

(1) High-Pass Filtering

keep high-frequency parts of the variations and remove low-
frequency parts of the variations.

(2) Low-Pass Filtering

keep low-frequency and remove high-frequency parts of the 
variations.

(3) Band-Pass Filtering

remove both higher and lower frequencies and keep only certain 
frequency bands of the variations.
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Response Function

Time filters are the same as the data window we have discussed earlier.

By performing Fourier transform, we know that:

The ration between the filtered and original power spectrum is called 
the “response function”:

If R(ω)=1 the original amplitude at frequency ω is kept.

R(ω)=0 the original amplitude at frequency ω is filtered out.

filter or data window

power spectrum after filtering

original power spectrum
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An Perfect Filter

The ideal filter should have a response of 1 over the 
frequency bands we want to keep and a response of zero 
over the frequency bands we want to remove:

A Perfect Square Response Function

ESS210B
Prof. Jin-Yi Yu

A Sharp-Cutoff Filter

(From Hartmann 2003)


