

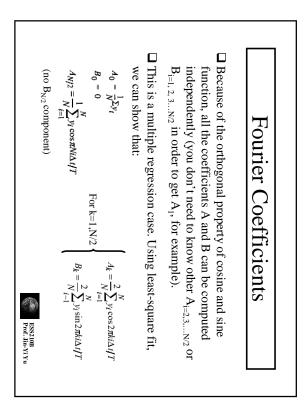
Purpose of Time Series Analysis

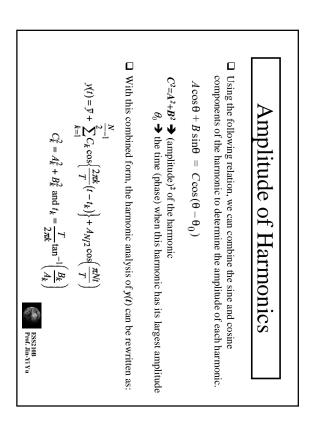
Some major purposes of the statistical analysis of time series are:

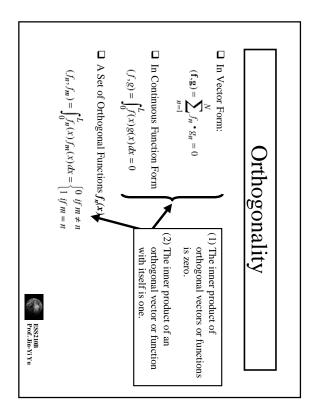
- □ To understand the variability of the time series.
- To identify the regular and irregular agaillations of the time series
- \square To identify the regular and irregular oscillations of the time series.
- To describe the characteristics of these oscillations.To understand the physical processes that give rise to each of these
- a connectsmit are physical processes that give rise to each of an oscillations.

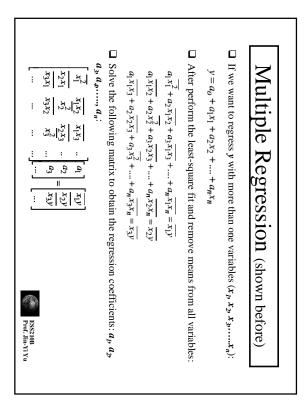
To achieve the above, we need to:

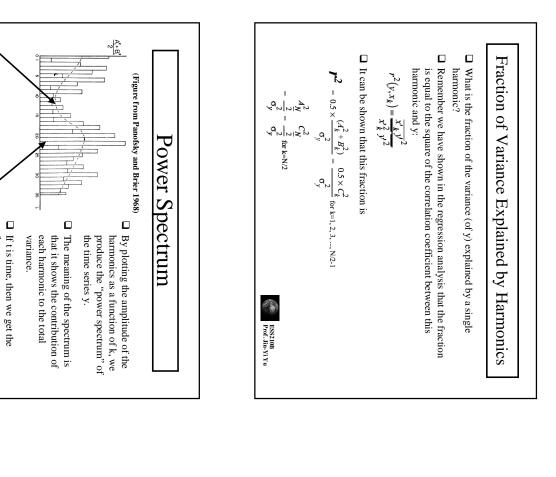
- □ Identify the regular cycle (harmonic analysis)
- \square Estimate the importance of these cycles (power spectral analysis)
- Isolate or remove these cycles (filtering)

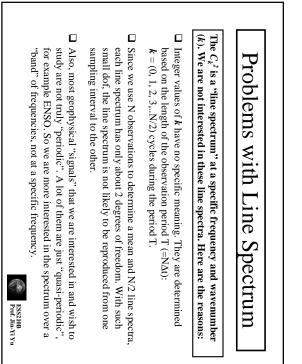












smooth spectrum

line spectrum

 \Box If t is distance, then we get the

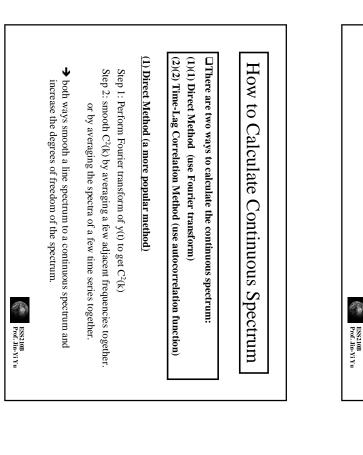
frequency spectrum.

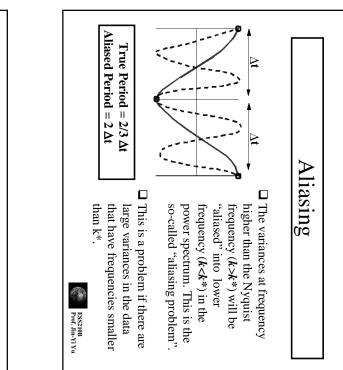
wavenumber spectrum

ESS210B Prof. Jin-Yi Yu

How Many Harmonics Do We Need:

- □ Since the harmonics are all uncorrelated, no two harmonics can explain the same part of the variance of y.
- ☐ In other words, the variances explained by the different harmonics can be added.
- □ We can add up the fractions to determine how many harmonics we need to explain most of the variations in the time series of y.





Nyquist frequency

 κ_{I}

 k_2

 $\mathbf{-}_{k^{*}}^{k}$ $\mathbf{-}_{k^{*}}^{k}$ k* is called the "Nyquist frequency",

 $\overline{y^2} = \int \Phi(k) dk$

□ The Nyquist frequency is the highest

which has a frequency of one cycle per $2\Delta t$. (This is the k=N/2 harmonics).

frequency can be resolved by the given

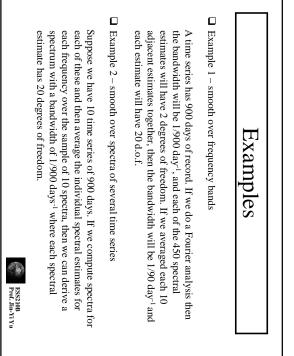
spacing of the data point.

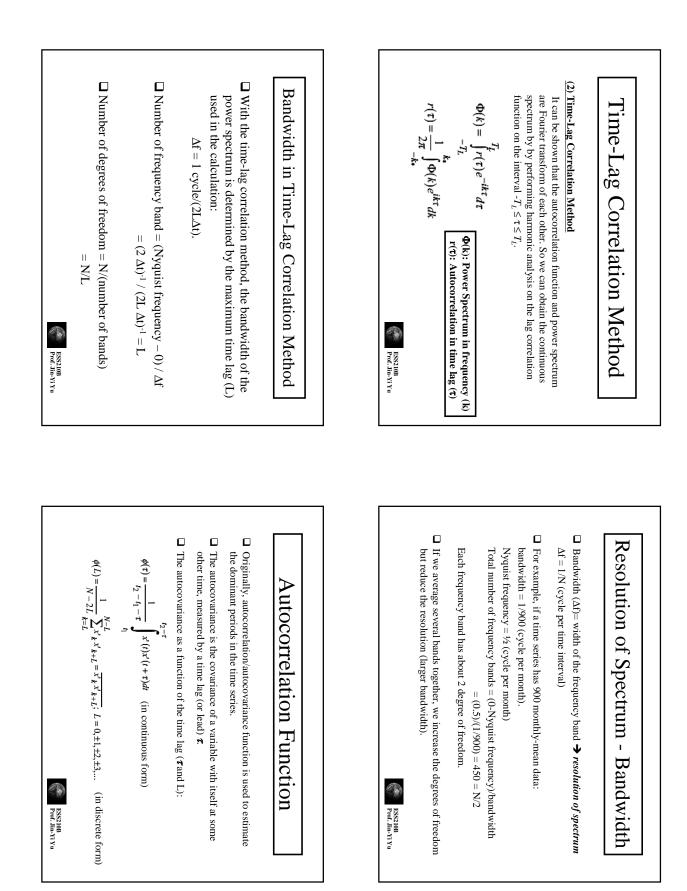
 $\mathbf{Q}(k)$

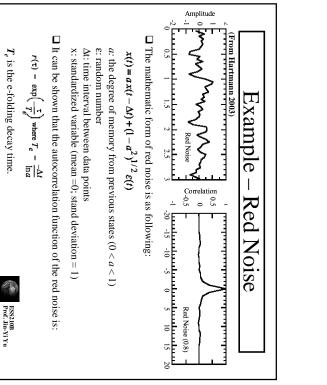
□ So we need a "continuous spectrum"

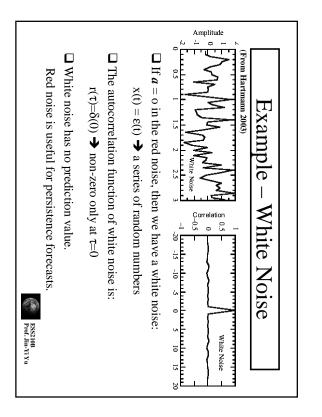
that tells us the variance of *y*(*t*) per unit frequency (wavenumber) interval:

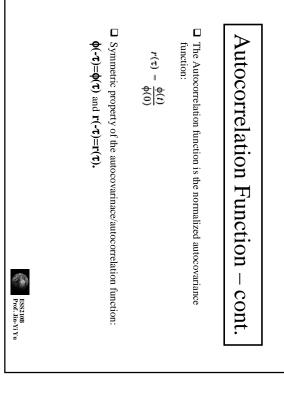
Continuous Spectrum

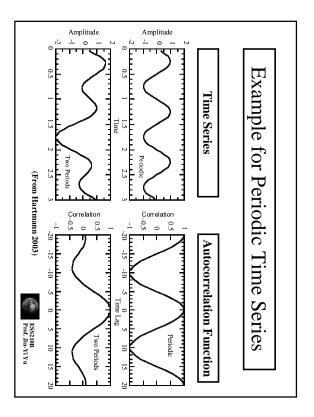


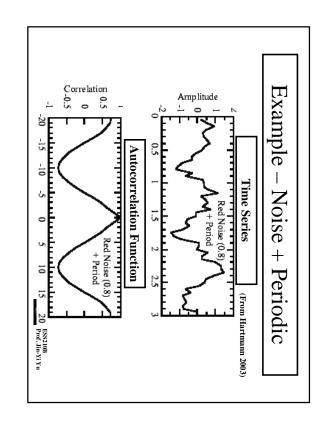


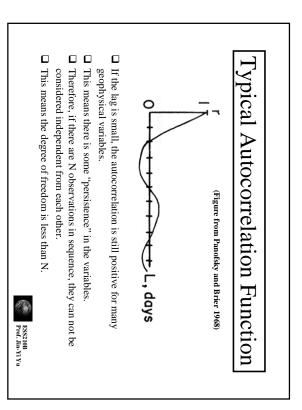


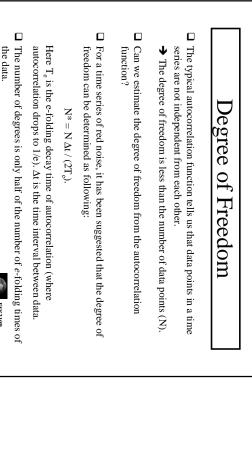




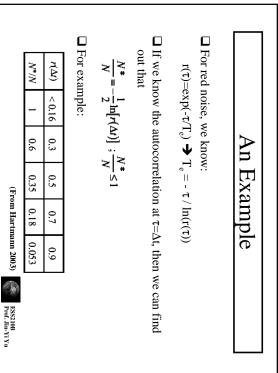


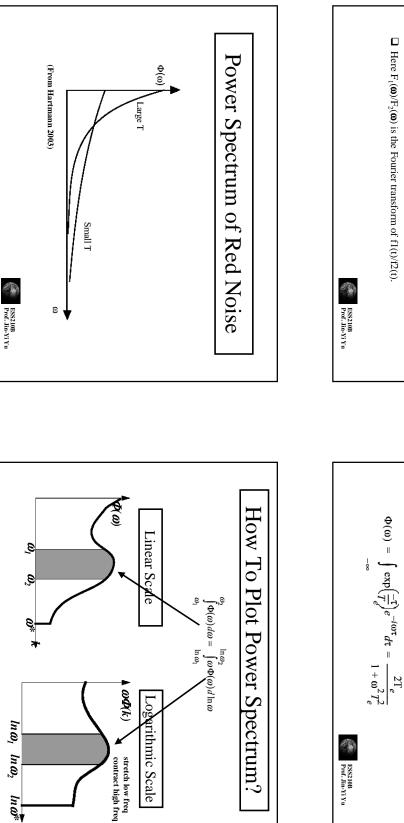


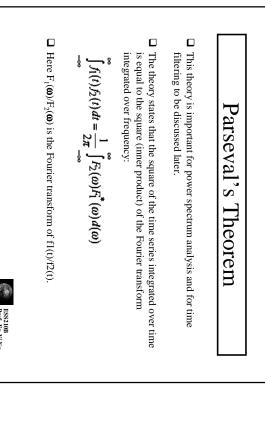




ESS210B Prof. Jin-Yi Yu







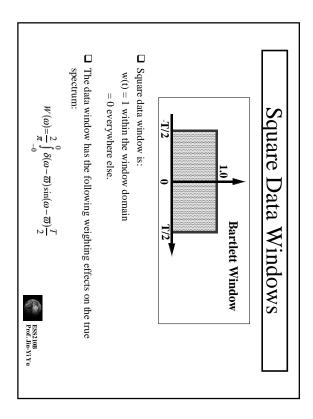
By performing the Fourier transform of the autocorrelation function, we obtain the power spectrum of the red noise: \square We already showed that the autocorrelation function of the red noise is:

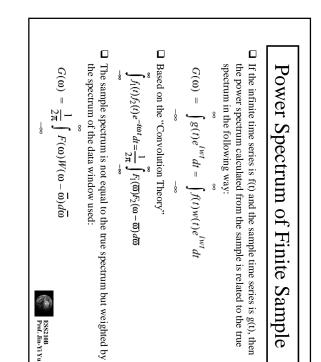
 $r(\tau) = \exp\left(-\frac{\tau}{T_e}\right)$ where $T_e = \frac{-\Delta t}{\ln a}$

□ Let's use the Parseval's theory to calculate the power spectrum of red

Example – Spectrum of Red Noise

noise.





□ It is like that we obtain the finite time series from the infinite time domain through a "data window:

finite sample

finite length.

 \square The Fourier transform obtains the "true" power spectrum from a time

Data Window

series with a infinite time domain. In real cases, the time series has a

 \square How does the data window affect the power spectrum?

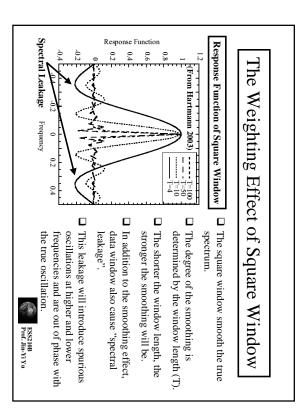
ESS210B Prof. Jin-Yi Yu Data Window

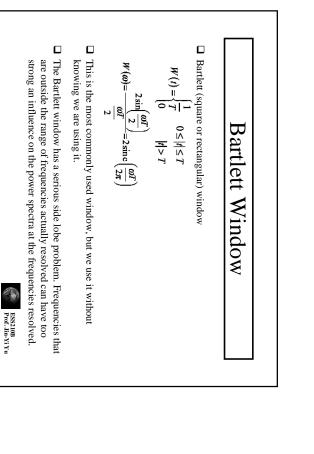
Infinite time series

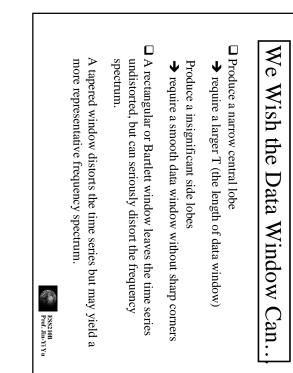
I

i

I







 \square How do we reduce the side lobes associated with the data window?

Tapered Data Window

 \rightarrow A tapered data window.

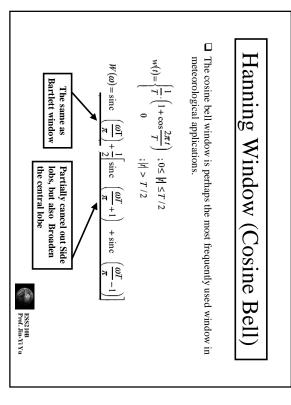
Square Window I

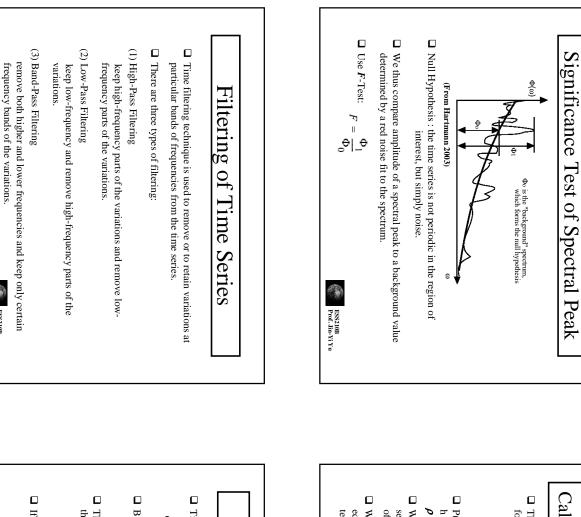
Tapered Window (t)

W(ω)

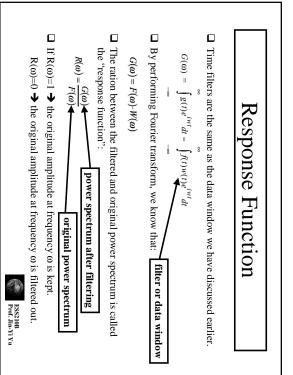
(from Hartmann 2003)

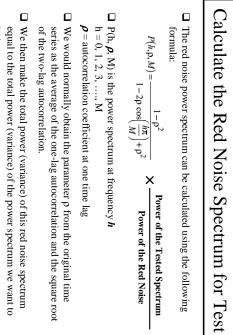
ESS210B Prof. Jin-Yi Yu





ESS210B Prof. Jin-Yi Yu





ESS210B Prof. Jin-Yi Yu

