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Purpose of Time Series Analysis

Some major purposes of the statistical analysis of time
seriesare:

O To understand the variability of the time series.

O Toidentify the regular and irregular oscillations of the time series.

O To describe the characteristics of these oscillations.

O To understand the physical processes that give rise to each of these
oscillations.

To achieve the above, we need to:
Q Identify the regular cycle (harmonic analysis)
O Estimate the importance of these cycles (power spectral analysis)

Q Isolate or remove these cycles (filtering)
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Harmonic Analysis

O Harmonic analysisis used to identify the periodic (regular) variationsin
geophysical time series.

Q If we have N observations of (x;, y;), the time series y(t) can be
approximated by cosine and sine functions :
N t: Time

= i . t T: Period of observation = NAt
=4+ |4 2k —+ By sin2mk— :
=4, Wh # COSSRRT ¥ Bysin L A, B, Coefficients of kth harmonic

O How many harmonics (cosine/sine functions) do we need?

In general, if the number of observationsis N, the number of harmonic
equal to N/2 (pairs of cosine and sine functions).
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What Does Each Harmonic Mean?

Asan example, if thetime seriesisthe monthly-mean temperature from
January to December:

O N=12, At =1 month, and T=12x At = 12 month = one year
Q 15 harmonic (k=1) =» annual harmonic (one cycle through the period)

a:?i& - maﬁqu - mH:mMIH 7 Period = NAt = 12 months 7

Q 2 harmonic (k=2) =» semi-annual harmonic (2 cycles through the period)

) m £y | 2miael 2w Tum:oano.mzknmaosﬁsi
sin mawm:v = sin| = sin| =—

N N
AL =
2 2

Q Last harmonic (k=N/2) =» the smallest period to be included.

; 7 Period = 2At = 2 months
ﬂ:mmﬁ.@hu = sin| ImiAr | _ m_.=hm|_:u
T Nx WE 2 %
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Orthogonality

Multiple Regression (shown before)

Q In Vector Form:
N ) (1) Theinner product of
N vo = orthogonal vectors or functions
;.TTM_\: & =0 is zero.
n=

v/ (2) Theinner product of an
orthogonal vector or function
with itself isone.

Q In Continuous Function Form

L
o) = bﬁﬁs& -0 ]

O A Set of Orthogonal Functions f (X

0ifm=#n

L
Ab.ﬂsvnk-ohqgu.\?:ug_wn T m._n.‘: =n

ESS210B
Prof. Jin-Yi Yu

Q If we want to regress y with more than one variables (X, X5, Xg,.....X,):
Vy=a, tax) taxx; ..t apxy

QO After perform the least-square fit and remove means from all variables:

D_HHM +_DMH—HM .Tthme +....+D_=H_v\a ”a

a)X1X7 +amkw +azxoxy +.L b ayxoxy =x0)

a)pxX1xs +QNHme +Qw.dm

FotayXax, = x)

QO Solve the following matrix to obtain the regression coefficients: a,, a,,

X XX Xxy . |a 1y
Xy Hm xpxq .| G2 |_| X2V
Gn mn x| B |xy
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Fourier Coefficients

U Because of the orthogonal property of cosine and sine
function, all the coefficients A and B can be computed
independently (you don’t need to know other A, 5, OF
Bi-1 2 3.2 INOrder to get A, for example).

O Thisisamultiple regression case. Using least-square fit,
we can show that:

1 N
Ag = MME Ay HmMS cos2mkiAf T
= ' .”H
By =10 For k=1,N/2 ) mz
N == rosin 2 ki
Ayp = PzM. ; cosTNIA LT Be=% .MM.: sin2mkia/T
i

i=1

(no By, component)
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Amplitude of Harmonics

Q Using the following relation, we can combine the sine and cosine
components of the harmonic to determine the amplitude of each harmonic.

Acos® + Bsin@ = Ccos(6-0)

C?=A?+B? =» (amplitude)? of the harmonic
6, = the time (phase) when this harmonic has its largest amplitude

Q With this combined form, the harmonic analysis of y(t) can be rewritten as:

N

2

2
\Eanﬂ.‘. Mﬁ» nc#ﬁ@ | m»# +;>Qm nomﬁhwaw
»H_

G =A + B andt, ———tan~I[ B&
27k Ay
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Fraction of Variance Explained by Harmonics

O What isthe fraction of the variance (of y) explained by a single
harmonic?

O Remember we have shown in the regression analysis that the fraction
isegual to the square of the correlation coefficient between this
harmonic and y:

Xy

¥y

O It can be shown that thisfractionis

2

%?#T

2 2
Ui+ B _ 05xC
2 2

v 9y

«N =05x

fork=1,2,3,...,N/2-1

for k=N/2

k<°l*-)tml2:hl“’
wqmtmlzqw e
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How Many Harmonics Do We Need?

1 Since the harmonics are all uncorrelated, no two harmonics
can explain the same part of the variance of y.

U In other words, the variances explained by the different
harmonics can be added.

U We can add up the fractions to determine how many

harmonics we need to explain most of the variationsin the
time seriesof y.

[ £ss2108
N Prof. Jin-Yi Yu

Power Spectrum

(Figure from Panofsky and Brier 1968)

Q By plotting the amplitude of the
harmonics as a function of k, we
produce the “power spectrum” of
thetime seriesy.

O The meaning of the spectrumis
that it shows the contribution of
| each harmonic to the total
variance.

Qa If tistime, then we get the
frequency spectrum.

Smooth spectrum _ _ line spectrum _ QO If tisdistance, then we get the

wavenumber spectrum.
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Problems with Line Spectrum

The C2isa“line spectrum” at a specific frequency and wavenumber
(k). Wearenot interested in these line spectra. Here are the reasons:

Q Integer values of k have no specific meaning. They are determined
based on the length of the observation period T (=NAt):
k=1(0, 1, 2, 3,..N/2) cycles during the period T.

O Sincewe use N observations to determine a mean and N/2 line spectra,
each line spectrum has only about 2 degrees of freedom. With such
small dof, the line spectrumis not likely to be reproduced from one
sampling interval to the other.

Q Also, most geophysical “signals’ that we are interested in and wish to
study are not truly “periodic”. A lot of them are just “quasi-periodic”,
for example ENSO. So we are more interested in the spectrum over a
“band” of frequencies, not at a specific frequency.
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Continuous Spectrum

ADK) 0 Sowe need a* continuous spectrum’
that tells us the variance of y(t) per unit
frequency (wavenumber) interval:

— K
y? = [@(k)dk
0

k
K K e QO k* iscalled the “Nyquist frequency”,
1 2

which has afrequency of one cycle per
2At. (Thisisthe k=N/2 harmonics).

O The Nyquist frequency is the highest

frequency can be resolved by the given
Nyquist frequency spacing of the data point.
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Aliasing

U The variances at frequency
higher than the Nyquist
frequency (k>k*) will be
“aliased” into lower
frequency (k<k*) in the

power spectrum. Thisisthe
so-called “aliasing problem”.

U Thisisaproblemif there are

True Period = 2/3 At large variances in the data
Aliased Period = 2 At that have frequencies smaller
than k*.
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How to Calculate Continuous Spectrum

QThere aretwo waysto calculate the continuous spectrum:

(2)(1) Direct Method (use Fourier transform)
(2)(2) Time-Lag Correlation Method (use autocorrelation function)

(1) Direct Method (a mor e popular method)

Step 1: Perform Fourier transform of y(t) to get C4(k)
Step 2: smooth C?(k) by averaging a few adjacent frequencies together.
or by averaging the spectra of afew time series together.

=> both ways smooth a line spectrum to a continuous spectrum and
increase the degrees of freedom of the spectrum.
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Examples

O Example 1 — smooth over frequency bands

A time series has 900 days of record. If we do a Fourier analysis then
the bandwidth will be 1/900 day*, and each of the 450 spectral
estimates will have 2 degrees of freedom. If we averaged each 10
adjacent estimates together, then the bandwidth will be 1/90 day* and
each estimate will have 20 d.o.f.

O Example 2 — smooth over spectra of several time series

Suppose we have 10 time series of 900 days. If we compute spectra for
each of these and then average the individual spectral estimates for
each frequency over the sample of 10 spectra, then we can derive a
spectrum with a bandwidth of 1/900 days* where each spectral
estimate has 20 degrees of freedom.
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Time-Lag Correlation Method

(2) Time-Lag Correlation Method
It can be shown that the autocorrelation function and power spectrum
are Fourier transform of each other. So we can obtain the continuous
spectrum by by performing harmonic analysis on the lag correlation
function on theinterval -T, <Tt<T,.

Resolution of Spectrum - Bandwidth

2 .
O(k)= [r(z)e * dr
-T ®(k): Power Spectrum in frequency (k)
K r(t): Autocorrelation in timelag (t)
1 ¢ ikt
T)=— | B(k)e™Tdk
=57 [o0
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O Bandwidth (Af)= width of the frequency band =» resolution of spectrum
Af = 1/N (cycle per timeinterval)

O For example, if atime series has 900 monthly-mean data:
bandwidth = 1/900 (cycle per month).
Nyquist frequency = % (cycle per month)
Total number of frequency bands = (0-Nyquist frequency)/bandwidth
= (0.5)/(1/900) = 450 = N/2
Each frequency band has about 2 degree of freedom.

O If we average several bands together, we increase the degrees of freedom
but reduce the resolution (larger bandwidth).
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Bandwidth in Time-Lag Correlation Method

O With the time-lag correlation method, the bandwidth of the
power spectrum is determined by the maximum time lag (L)
used in the calculation:

Af =1 cycle/(2LAL).

U Number of frequency band = (Nyquist frequency — 0) / Af
=AY/ (2L A)t=L

O Number of degrees of freedom = N/(number of bands)
=N/L
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Autocorrelation Function

Q Originally, autocorrelation/autocovariance function is used to estimate
the dominant periods in the time series.

O The autocovariance is the covariance of a variable with itself at some
other time, measured by atime lag (or lead) 7.

QO The autocovariance as afunction of thetimelag (zand L):

=T
1 . .
,zanh — ‘_.a.SH_A:d& (in continuous form)
2 —h —
f
| Nt .
W)= s DX =TTy L=04122,43,. (indiscreteform)
Teb =L
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Autocorrelation Function — cont.

O The Autocorrelation function is the normalized autocovariance
function:

_ 80
0 = 5o

O Symmetric property of the autocovarinace/autocorrelation function:

0(-1)=¢(t) and r (-1)=r (1).
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Amplitude

Amplitude

Example for Periodic Time Series

_ Time Series _ _>c882m_m:o: Function _
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Example — Red Noise

(From Hartmann 2003)
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QO The mathematic form of red noise is as following:
x(t)=ax(t— A +(1— a2 ()

a: the degree of memory from previous states (0 <a < 1)
€: random number

At: time interval between data points

X: standardized variable (mean =0; stand deviation = 1)

O It can be shown that the autocorrelation function of the red noiseis:

rit) = mxumiﬂu where T, = H_:
Ty Ina

. . . =
T, isthe e-folding decay time. & i

Amplitude

Example — White Noise

(From Hartmann 2003)
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A If a=ointhered noise, then we have awhite noise:
X(t) = e(t) =» aseries of random numbers

U The autocorrel ation function of white noiseis:
r(t)=5(0) = non-zero only at =0

U White noise has no prediction value.
Red noise is useful for persistence forecasts.
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Example — Noise + Periodic

Time Series (From Hartmann 2003)
N-- ---—--—--—--—--
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Typical Autocorrelation Function

r (Figure from Panofsky and Brier 1968)

0 L, days

Q If thelagis small, the autocorrelation is still positive for many
geophysical variables.
O Thismeansthereis some “persistence” in the variables.

QO Therefore, if there are N observations in sequence, they can not be
considered independent from each other.

O This meansthe degree of freedomislessthan N.
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An Example

Degree of Freedom

O Thetypical autocorrelation function tells usthat data pointsin atime
series are not independent from each other.

= The degree of freedom is less than the number of data points (N).

O Can we estimate the degree of freedom from the autocorrelation
function?

0 For atime series of red noise, it has been suggested that the degree of
freedom can be determined as following:

N* =N At/ (2T,).
Here T, isthe e-folding decay time of autocorrelation (where
autocorrelation dropsto 1/e). At isthe timeinterval between data.

O The number of degreesis only half of the number of e-folding times of
the data.
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3 For red noise, we know:
r(t)=exp(-t/Ty) = T,=-1/In(r(t))

Q If we know the autocorrelation at t=At, then we can find

out that
NE 1 *

P A A

U For example:

nan | <o016| 03 0.5 0.7 09
NN 1 0.6 035 | 0.18 | 0.053

(From Hartmann 2003) H ESS210B
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Parseval’s Theorem

Example — Spectrum of Red Noise

QO Thistheory isimportant for power spectrum analysis and for time
filtering to be discussed later.

O Thetheory states that the square of the time series integrated over time
isequal to the square (inner product) of the Fourier transform
integrated over frequency:

[A0A0E = [R@)R @)

O Here F,(o)/F,(®) isthe Fourier transform of f1(t)/f2(t).
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O Let'susethe Parseval’ s theory to calculate the power spectrum of red
noise.

O We aready showed that the autocorrelation function of the red noiseis:

A

T
- _ | where T. =
r{T) mxuh ﬂmu where T, 0

Q By performing the Fourier transform of the autocorrelation function,
we obtain the power spectrum of the red noise:
- Ty - 2T
O(w) = .— muﬁﬁﬂ.ﬂum T = |M
é 1+w ﬂu

. e
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Power Spectrum of Red Noise

How To Plot Power Spectrum?

Small T

(From Hartmann 2003)
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Data Window

O The Fourier transform obtains the “true” power spectrum from atime
series with ainfinite time domain. In real cases, the time serieshas a
finite length.

QO Itislikethat we obtain the finite time series from the infinite time
domain through a“ data window:

—

Data Window

0 T
O How does the data window affect the power spectrum?
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finite sample

Infinite time series

Power Spectrum of Finite Sample

Q If theinfinite time seriesis f(t) and the sample time seriesis g(t), then
the power spectrum calculated from the sampleisrelated to the true
spectrum in the following way:

Glw) = ?Ski& - b. fiywnye'™ de

O Based on the “ Convolution Theory”

oo

[ @ = [ @) (@-B)d

O The sample spectrum is not equal to the true spectrum but weighted by
the spectrum of the data window used:

G(w) = % .— Flo) (o - 0)do

N 50108
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Square Data Windows

Bartlett Window

T2 0 T2

O Square datawindow is:
w(t) = 1 within the window domain
=0 everywhere else.

O The datawindow has the following weighting effects on the true
spectrum:

0
2 T
W(w)=— | 6(c—@)sin(w—B)—
T 2 N ss2108
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The Weighting Effect of Square Window

_ Response Function of Square Window _ O The square window smooth the true
spectrum.

12

[iFrom Hartmann 2003 - - o] O Thedegree of the smoothing is
F determined by the window length (T).

O The shorter the window length, the
1 stronger the smoothing will be.

1 O Inaddition to the smoothing effect,
data window also cause “spectral
leakage”.

QO Thisleakage will introduce spurious
oscillations at higher and lower

g frequencies and are out of phase with

Spectral Leakage  Frequency the true oscillation
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Tapered Data Window

We Wish the Data Window Can..

O How do we reduce the side lobes associated with the data window?
=> A tapered data window.

Square Window wH W)
Tapered Window W W)

(from Hartmann 2003) H Ess2108
N
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1 Produce a narrow central lobe
=> requirealarger T (the length of data window)

Produce ainsignificant side lobes
=> require asmooth data window without sharp corners

U A rectangular or Bartlett window leaves the time series
undistorted, but can serioudly distort the frequency
spectrum.

A tapered window distorts the time series but may yield a
more representative frequency spectrum.
I Es2108
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Bartlett Window

QO Bartlett (square or rectangular) window
1
- 0Z|=T
w={7 <M
0 [4=T

. (ol
Niwu or
‘ﬂﬁﬁ&“ %HNE&G hﬂg
2
QO Thisisthe most commonly used window, but we use it without
knowing we are using it.

O The Bartlett window has a serious side |obe problem. Frequencies that
are outside the range of frequencies actually resolved can have too
strong an influence on the power spectra at the frequencies resolved.
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Hanning Window (Cosine Bell)

O The cosine bell window is perhaps the most frequently used window in
meteorological applications.

1 2
|‘H_+ncwhu 1 0< _..._ <T/i2
w(f)= T
0 =712
W (a) = sinc hncl,_,u+w_‘w_.=n h8|ﬂ+_u +sinc hnclﬂl_:
Fid .w T fid )
Thesameas Partially cancel out Side
Bartlett window lobs, but also Broaden
the central lobe
N <2108
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Significance Test of Spectral Peak Calculate the Red Noise Spectrum for Test

o(w) 9 @ is the "background spectrum O The red noise power spectrum can be calculated using the following
D1 which forms the null rw.no_rnwmm formula:
1-p2 Power of the Tested Spectrum
P(h,p,M) = s X :
1-2p nom..m|u+n Power of the Red Noise
Do M
y v L .
> Q P(h, p, M) isthe power spectrum at frequency h
(From Hartmann 2003) h=0,1,23,.... M

O Null Hypothesis : the time seriesis not periodic in the region of p = autocorrelation coefficient at onetime lag

interest, but simply noise. O Wewould normally obtain the parameter p from the original time

series as the average of the one-lag autocorrelation and the square root

O We thus compare amplitude of a spectral peak to a background value -
of the two-lag autocorrelation.

determined by ared noise fit to the spectrum.
O Use F-Tes: ® O We then make the total power (variance) of this red noise spectrum
seF-Test: - 1 equal to the total power (variance) of the power spectrum we want to

D - test -
0 [ S Ess2108 : e S £Ss2108
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Response Function

Filtering of Time Series

Q Time filters are the same as the data window we have discussed earlier.

Q Time filtering technique is used to remove or to retain variations at
particular bands of frequencies from the time series. iwt iwt
Glw) = FSN dt = ?:i:a dt

Q There are three types of filtering: o o 4/_
Q By performing Fourier transform, we know that: |111L€r Or datawindow

(1) High-Pass Filtering
keep high-frequency parts of the variations and remove low- G(w) = Flw)-W(w)

frequency parts of the variations. . . o )
O Theration between the filtered and original power spectrumiscalled

(2) Low-Pass Filtering the “response function”: —
keep low-frequency and remove high-frequency parts of the R@) Qﬁef.\_ power spectrum after filtering _
L. )=
variations. Flo)4— ‘_ original power spectrum _
(3) Band-Pass Filtering Q If R(w)=1 = the original amplitude at frequency o is kept.

remove both higher and lower frequencies and keep only certain R(w)=0 =» the original amplitude at frequency o is filtered out.
frequency bands of the variations. H I . Eso108
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An Perfect Filter

U Theidedl filter should have aresponse of 1 over the
frequency bands we want to keep and a response of zero
over the frequency bands we want to remove:

A Perfect Square Response Function

1.0

R{w)
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A Sharp-Cutoff Filter

1p S —
SN 1y RiONL) |
1 Fiao” il M._ ......... Re19NL) |3
- 08 E | = R(49NL) I
s F .d 3
= 0.6
= o thout 7
W 0.4 “ Lanczos Smooth “
= s § 3
0.2 F i ]
0 o ._.V . =
i SRS
..U.N.....................
0 0.1 0.2 0.3 0.4 0.5

(From Hartmann 2003)

Frequency
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