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P
art 3: T

im
e Series I

H
arm

onic A
nalysis

S
pectrum

 A
nalysis

A
utocorrelation Function

D
egree of Freedom

D
ata W

indow

S
ignificance T

ests
(F

igu
re from

 P
anofsky and B

rier 1968)
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Purpose of T
im

e Series A
nalysis

Som
e m

ajor purposes of the statistical analysis of tim
e 

series are:
T

o understand the variability of the tim
e series.

T
o identify the regular and irregular oscillations of the tim

e series.

T
o describe the characteristics of these oscillations.

T
o understand the physical processes that give rise to each of these 

oscillations.

T
o achieve the above, w

e need to:
Identify the regular cycle (harm

onic analysis)

E
stim

ate the im
portance of these cycles (pow

er spectral analysis)

Isolate or rem
ove these cycles (filtering)
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H
arm

onic A
nalysis

H
arm

onic analysis is used to identify the periodic (regular) variations in 
geophysical tim

e series. 

If w
e have N

 observations of (x
i , y

i ), the tim
e series y(t) can be 

approxim
ated by cosine and sine functions :

H
ow

 m
any harm

onics (cosine/sine functions) do w
e need?

In general, if the num
ber of observations is N

, the num
ber of harm

onic 
equal to N

/2
(pairs of cosine and sine functions).

t: T
im

e
T

: P
eriod of observation = N ∆

t
A

k , B
k : C

oefficients of kth harm
onic

E
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W
hat D

oes E
ach H

arm
onic M

ean?
A

s an exam
ple, if the tim

e series is the m
onthly-m

ean tem
perature from

 
January to D

ecem
ber:

N
=

12, ∆
t =

1 m
onth, and T

=
12×

∆
t =

 12 m
onth =

 one year

1
sharm

onic (k=
1) 

annual harm
onic (one cycle through the period)

2
nd

harm
onic (k=

2) 
sem

i-annual harm
onic (2 cycles through the period)

L
ast harm

onic (k=
N

/2) 
the sm

allest period to be included.

Period =
 N

∆
t =

 12 m
onths

Period =
 0.5N

∆
t =

 6 m
onths

Period =
 2∆

t =
 2 m

onths
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O
rthogonality

In V
ector Form

:

In C
ontinuous Function Form

A
 Set of O

rthogonal Functions fn (x)

(1) T
he inner product of 

orthogonal vectors or functions 
is zero.

(2) T
he inner product of an 

orthogonal vector or function 
w

ith itself is one.
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M
ultiple R

egression (show
n before)

If w
e w

ant to regress y
w

ith m
ore than one variables (x

1 , x
2 , x

3 ,…
..x

n ):

A
fter perform

 the least-square fit and rem
ove m

eans from
 all variables:

Solve the follow
ing m

atrix to obtain the regression coefficients: a
1 , a

2 , 
a

3 , a
4 ,…

.., a
n :

E
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Fourier C
oefficients

B
ecause of the orthogonal property of cosine and sine 

function, all the coefficients A
 and B

 can be com
puted 

independently (you don’t need to know
 other A

i=2,3,…
N

/2
or 

B
i=1, 2, 3…

N
/2

in order to get A
1 , for exam

ple).

T
his is a m

ultiple regression case. U
sing least-square fit, 

w
e can show

 that:

For k=
1,N

/2  

(no B
N

/2 com
ponent)

E
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A
m

plitude of H
arm

onics
U

sing the follow
ing relation, w

e can com
bine the sine and cosine

com
ponents of the harm

onic to determ
ine the am

plitude of each harm
onic. 

W
ith this com

bined form
, the harm

onic analysis of y(t) can be rew
ritten as:

C
2=A

2+
B

2  
(am

plitude) 2
of the

harm
onic

θ
0

the tim
e (phase) w

hen this harm
onic has its largest am

plitude
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Fraction of V
ariance E

xplained by H
arm

onics

W
hat is the fraction of the variance (of y) explained by a single 

harm
onic?

R
em

em
ber w

e have show
n in the regression analysis that the fraction 

is equal to the square of the correlation coefficient betw
een this 

harm
onic and y:

It can be show
n that this fraction is 

r
2

E
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H
ow

 M
any H

arm
onics D

o W
e N

eed?

Since the harm
onics are all uncorrelated, no tw

o harm
onics 

can explain the sam
e part of the variance of y.

In other w
ords, the variances explained by the different 

harm
onics can be added.

W
e can add up the fractions to determ

ine how
 m

any 
harm

onics w
e need to explain m

ost of the variations in the 
tim

e series of y.
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Pow
er Spectrum

B
y plotting the am

plitude of the 
harm

onics as a function of k, w
e 

produce the “pow
er spectrum

”
of 

the tim
e series y.

T
he m

eaning of the spectrum
 is 

that it show
s the contribution of 

each harm
onic to the total 

variance.

If t is tim
e, then w

e get the 
frequency spectrum

.

If t is distance, then w
e get the

w
avenum

ber
spectrum

.

sm
ooth spectrum

line spectrum

(F
igu

re from
 P

anofsky and B
rier 1968)
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Problem
s w

ith L
ine Spectrum

Integer values of k
have no specific m

eaning. T
hey are determ

ined 
based on the length of the observation period T

 (=
N

∆
t):

k =
 (0, 1, 2, 3,..N

/2) cycles during the period T
.

Since w
e use N

 observations to determ
ine a m

ean and N
/2 line spectra, 

each line spectrum
 has only about 2 degrees of freedom

. W
ith such 

sm
all dof, the line spectrum

 is not likely to be reproduced from
 one 

sam
pling interval to the other.

A
lso, m

ost geophysical “signals”
that w

e are interested in and w
ish to 

study are not truly “periodic”. A
 lot of them

 are just “quasi-periodic”, 
for exam

ple E
N

SO
. So w

e are m
ore interested in the spectrum

 over
a 

“band”
of frequencies, not at a specific frequency.

T
he C

k 2
is a “line spectrum

”
at a specific frequency and w

avenum
ber

(k). W
e are not interested in these line spectra. H

ere are the reasons:
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C
ontinuous Spectrum

So w
e need a “continuous spectrum

”
that tells us the variance of y(t)

per unit 
frequency (w

avenum
ber) interval:

k* is called the “N
yquistfrequency”, 

w
hich has a frequency of one cycle per 

2∆
t. (T

his is the k=
N

/2 harm
onics).

T
he N

yquist frequency is the highest 
frequency can be resolved by the given 
spacing of the data point.

k*
k

1
k

2

Φ
(k)

k

N
yquistfrequency

E
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A
liasing

T
he variances at frequency 

higher than the N
yquist 

frequency (k>
k*) w

ill be 
“aliased”

into  low
er 

frequency (k<
k*) in the 

pow
er spectrum

. T
his is the 

so-called “aliasing problem
”.

T
his is a problem

 if there are 
large variances in the data 
that have frequencies sm

aller 
than k*.

T
rue P

eriod = 2/3 ∆
t

A
liased P

eriod = 2 ∆
t
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H
ow

 to C
alculate C

ontinuous Spectrum

(1) D
irect M

ethod (a m
ore popular m

ethod)

Step 1: Perform
 Fourier transform

 of y(t) to get C
2(k)

Step 2: sm
ooth C

2(k) by averaging a few
 adjacent frequencies together.

or by averaging the spectra of a few
 tim

e series together.

both w
ays sm

ooth a line spectrum
 to a continuous spectrum

 and 
increase the degrees of freedom

 of the spectrum
.

T
here are tw

o w
ays to calculate the continuous spectrum

:

(1)(1) D
irect M

ethod  (use F
ourier transform

)

(2)(2) T
im

e-L
ag C

orrelation M
ethod (use autocorrelation function)

E
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E
xam

ples

E
xam

ple 1 –
sm

ooth over frequency bands

A
 tim

e series has 900 days of record. If w
e do a Fourier analysis then 

the bandw
idth w

ill be 1/900 day
-1, and each of the 450 spectral 

estim
ates w

ill have 2 degrees of freedom
. If w

e averaged each 10
adjacent estim

ates together, then the bandw
idth w

ill be 1/90 day
-1 and 

each estim
ate w

ill have 20 d.o.f.

E
xam

ple 2 –
sm

ooth over spectra of several tim
e series

Suppose w
e have 10 tim

e series of 900 days. If w
e com

pute spectra for 
each of these and then average the individual spectral estim

ates
for 

each frequency over the sam
ple of 10 spectra, then w

e can derive
a 

spectrum
 w

ith a bandw
idth of 1/900 days

-1
w

here each spectral  
estim

ate has 20 degrees of freedom
.
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T
im

e-L
ag C

orrelation M
ethod

(2) T
im

e-L
ag C

orrelation M
ethod

It can be show
n that the autocorrelation function and pow

er spectrum
 

are Fourier transform
 of each other. So w

e can obtain the continuous 
spectrum

 by by perform
ing harm

onic analysis on the lag correlation 
function on the interval -T

L ≤
τ ≤

T
L .

Φ
(k): P

ow
er Spectrum

 in frequency (k)
r(τ): A

utocorrelation in tim
e lag (τ)

E
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R
esolution of S

pectrum
 -

B
andw

idth

B
andw

idth (∆
f)=

 w
idth of the frequency band 

resolution of spectrum

∆
f =

 1/N
 (cycle per tim

e interval)

For exam
ple, if a tim

e series has 900 m
onthly-m

ean data:

bandw
idth =

 1/900 (cycle per m
onth).

N
yquistfrequency =

 ½
(cycle per m

onth)

T
otal num

ber of frequency bands =
 (0-N

yquist frequency)/bandw
idth

=
 (0.5)/(1/900) =

 450 =
 N

/2 

E
ach frequency band has about 2 degree of freedom

.

If w
e average several bands together, w

e increase the degrees of
freedom

 
but reduce the resolution (larger bandw

idth).
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B
andw

idth in T
im

e-L
ag C

orrelation M
ethod

W
ith the tim

e-lag correlation m
ethod, the bandw

idth of the 
pow

er spectrum
 is determ

ined by the m
axim

um
 tim

e lag (L
) 

used in the calculation:

∆
f =

 1 cycle/(2L∆
t).

N
um

ber of frequency band =
 (N

yquistfrequency –
0) / ∆

f 

=
 (2 ∆

t) -1
/ (2L

 ∆
t) -1

=
 L

N
um

ber of degrees of freedom
 =

 N
/(num

ber of bands)

=
 N

/L
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A
utocorrelation Function

O
riginally, autocorrelation/autocovariance

function is used to estim
ate 

the dom
inant periods in the tim

e series.

T
he autocovariance

is the covariance of a variable w
ith itself at som

e 
other tim

e, m
easured by a tim

e lag (or lead) τ.

T
he autocovariance as a function of the tim

e lag ( τ
and L

):

(in continuous form
)

(in discrete form
)
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A
utocorrelation Function –

cont. 

T
he A

utocorrelation function is the norm
alized

autocovariance
function:

S
ym

m
etric property of the autocovarinace/autocorrelation function:

φ(-τ)=φ(τ) and
r(-τ)=r(τ).

E
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E
xam

ple for Periodic T
im

e Series

T
im

e Series
A

utocorrelation F
unction

(F
rom

 H
artm

an
n

2003)
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E
xam

ple –
R

ed N
oise

T
he m

athem
atic form

 of red noise is as follow
ing:

a: the degree of
m

em
ory from

 previous states (0 <
 a <

 1)
ε: random

 num
ber

∆
t: tim

e interval betw
een data points

x: standardized variable (m
ean =

0; stand deviation =
 1)

It can be show
n that the autocorrelation function of the red noise is:

T
e is the e-folding decay tim

e.

(F
rom

 H
artm

an
n

2003)
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E
xam

ple –
W

hite N
oise

If a
=

 o in the red noise, then w
e have a w

hite noise:

x(t) = ε(t) 
a series of random

 num
bers

T
he autocorrelation function of w

hite noise is:

r(τ)=δ(0) 
non-zero only at τ=

0

W
hite noise has no prediction value.

R
ed noise is useful for persistence forecasts.

(F
rom

 H
artm

an
n

2003)
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E
xam

ple –
N

oise +
 Periodic

T
im

e Series

A
utocorrelation F

unction

(F
rom

 H
artm

an
n

2003)
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T
ypical A

utocorrelation Function

If the lag is sm
all, the autocorrelation is still positive for m

any 
geophysical variables.

T
his m

eans there is som
e “persistence”

in the variables.

T
herefore, if there are N

 observations in sequence, they can notbe 
considered independent from

 each other.

T
his m

eans the degree of freedom
 is less than N

.

(F
igu

re from
 P

anofsky and B
rier 1968)

E
SS210B

P
rof. Jin-Y

i Y
u

D
egree of Freedom

T
he typical autocorrelation function tells us that data points in a tim

e 
series are not independent from

 each other.

T
he degree of freedom

 is less than the num
ber of data points (N

).

C
an w

e estim
ate the degree of freedom

 from
 the autocorrelation 

function?

For a tim
e series of red noise, it has been suggested that the degree of 

freedom
 can be determ

ined as follow
ing:

N
* =

 N
 ∆

t/ (2T
e ).

H
ere T

e is the e-folding decay tim
e of autocorrelation (w

here 
autocorrelation drops to 1/e). ∆

t is the tim
e interval betw

een data.

T
he num

ber of degrees is only half of the num
ber of e-folding tim

es of 
the data.
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A
n E

xam
ple

For red noise, w
e know

:

r(τ)=
exp(-τ/T

e ) 
T

e =
 -τ

/ ln(r(τ))

If w
e know

 the autocorrelation at τ=∆
t, then w

e can find 
out that

For exam
ple:

(F
rom

 H
artm

an
n

2003)
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Parseval’s T
heorem

T
his theory is im

portant for pow
er spectrum

 analysis and for tim
e 

filtering to be discussed later.

T
he theory states that the square of the tim

e series integrated over tim
e 

is equal to the square (inner product) of the Fourier transform
 

integrated over frequency:

H
ere F

1 (ω
)/F

2 (ω
) is the Fourier transform

 of f1(t)/f2(t). 
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E
xam

ple –
Spectrum

 of R
ed N

oise

L
et’s use the Parseval’s theory to calculate the pow

er spectrum
 of red 

noise.

W
e already show

ed that the autocorrelation function of the red noise is:

B
y perform

ing the Fourier transform
 of the autocorrelation function, 

w
e obtain the pow

er spectrum
 of the red noise: 

E
SS210B

P
rof. Jin-Y

i Y
u

Pow
er Spectrum

 of R
ed N

oise

(F
rom

 H
artm

an
n

2003)
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H
ow

 T
o Plot Pow

er Spectrum
?

ω
*

ω
1

ω
2

Φ
(ω

)

k

lnω
*

lnω
1

lnω
2

ωΦ
(k)

L
inear Scale

L
ogarithm

ic Scale

stretch low
 freq

contract h
igh freq
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D
ata W

indow

T
he F

ourier transform
 obtains the “true”

pow
er spectrum

 from
 a tim

e 
series w

ith a infinite tim
e dom

ain. In real cases, the tim
e series has a 

finite length.

It is like that w
e obtain the finite tim

e series from
 the infinite tim

e 
dom

ain through a “data w
indow

:

H
ow

 does the data w
indow

 affect the pow
er spectrum

? Infinite tim
e series

0
T

finite sam
ple

D
ata W

indow

E
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Pow
er Spectrum

 of Finite Sam
ple

If the infinite tim
e series is f(t) and the sam

ple tim
e series is g(t), then 

the pow
er spectrum

 calculated from
 the sam

ple is related to the true 
spectrum

 in the follow
ing w

ay:

B
ased on the “C

onvolution T
heory”

T
he sam

ple spectrum
 is not equal to the true spectrum

 but w
eighted by 

the spectrum
 of the data w

indow
 used:
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Square D
ata W

indow
s

Square data w
indow

 is:

w
(t) =

 1 w
ithin the w

indow
 dom

ain 

=
 0 everyw

here else.

T
he data w

indow
 has the follow

ing w
eighting effects on the true 

spectrum
:

-T
/2

0
T

/2

1.0
B

artlett W
indow

E
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T
he W

eighting E
ffect of Square W

indow

T
he square w

indow
 sm

ooth the true 
spectrum

.

T
he degree of the sm

oothing is 
determ

ined by the w
indow

 length (T
).

T
he shorter the w

indow
 length, the 

stronger the sm
oothing w

ill be.

In addition to the sm
oothing effect, 

data w
indow

 also cause “spectral 
leakage”.

T
his leakage w

ill introduce spurious 
oscillations at higher and low

er 
frequencies and are out of phase w

ith 
the true oscillation. 

R
esponse F

unction of Square W
indow

Spectral L
eakage

(F
rom

 H
artm

an
n

2003)
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T
apered D

ata W
indow

H
ow

 do w
e reduce the side lobes associated w

ith the data w
indow

?

A
 tapered data w

indow
.

(from
 H

artm
ann 2003)
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W
e W

ish the D
ata W

indow
 C

an…

Produce a narrow
 central lobe 

require a larger T
 (the length of data w

indow
)

Produce a insignificant side lobes 
require a sm

ooth data w
indow

 w
ithout sharp corners

A
 rectangular or B

artlett w
indow

 leaves the tim
e series 

undistorted, but can seriously distort the frequency 
spectrum

.

A
 tapered w

indow
 distorts the tim

e series but m
ay yield a 

m
ore representative frequency spectrum

.
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B
artlett W

indow

B
artlett (square or rectangular) w

indow

T
his is the m

ost com
m

only used w
indow

, but w
e use it w

ithout 
know

ing w
e are using it.

T
he B

artlett w
indow

 has a serious side lobe problem
. Frequencies

that 
are outside the range of frequencies actually resolved can have too 
strong an influence on the pow

er spectra at the frequencies resolved.

E
SS210B

P
rof. Jin-Y

i Y
u

H
anning W

indow
 (C

osine B
ell)

T
he cosine bell w

indow
 is perhaps the m

ost frequently used w
indow

 in 
m

eteorological applications. 

T
he sam

e as
B

artlett w
indow

P
artially cancel out Side 

lobs, but also  B
roaden 

the central lobe
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Significance T
est of Spectral Peak

N
ull H

ypothesis : the tim
e series is not periodic in the region of 

interest, but sim
ply noise. 

W
e thus com

pare am
plitude of a spectral peak to a background value 

determ
ined by a red noise fit to the spectrum

.

U
se F

-T
est:

(F
rom

 H
artm

an
n

2003)
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C
alculate the R

ed N
oise S

pectrum
 for T

est

T
he red noise pow

er spectrum
 can be calculated using the follow

ing 
form

ula:

P(h, ρ
, M

) is the pow
er spectrum

 at frequency h
h =

 0, 1, 2, 3, …
., M

ρ
=

 autocorrelation coefficient at one tim
e lag

W
e w

ould norm
ally obtain the param

eter ρ from
 the original tim

e 
series as the average of the one-lag autocorrelation and the square root 
of the tw

o-lag autocorrelation.

W
e then m

ake the total pow
er (variance) of this red noise spectrum

 
equal to the total pow

er (variance) of the pow
er spectrum

 w
e w

ant to 
test.

×
P

ow
er of the T

ested Spectrum

P
ow

er of the R
ed N

oise

E
SS210B

P
rof. Jin-Y

i Y
u

Filtering of T
im

e Series

T
im

e filtering technique is used to rem
ove or to retain variations at 

particular bands of frequencies from
 the tim

e series.

T
here are three types of filtering:

(1) H
igh-Pass Filtering

keep high-frequency parts of the variations and rem
ove low

-
frequency parts of the variations.

(2) L
ow

-Pass Filtering

keep low
-frequency and rem

ove high-frequency parts of the 
variations.

(3) B
and-Pass Filtering

rem
ove both higher and low

er frequencies and keep only certain 
frequency bands of the variations.

E
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R
esponse Function

T
im

e filters are the sam
e as the data w

indow
 w

e have discussed earlier.

B
y perform

ing Fourier transform
, w

e know
 that:

T
he ration betw

een the filtered and original pow
er spectrum

 is called 
the “response function”:

If R
(ω

)=
1 

the original am
plitude at frequency ω

is kept.

R
(ω

)=
0 

the original am
plitude at frequency ω

is filtered out.

filter or data w
indow

pow
er spectrum

 after filtering

original pow
er spectrum
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A
n P

erfectFilter

T
he ideal filter should have a response of 1 over the 

frequency bands w
e w

ant to keep and a response of zero 
over the frequency bands w

e w
ant to rem

ove:

A
 P

erfect Square R
esponse F

unction

E
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A
 Sharp-C

utoff F
ilter

(F
rom

 H
artm

an
n

2003)


