Part 2: Analysis of Relationship
Between Two Variables

ULinear Regression
ULinear correlation
Q Significance Tests

QO Multiple regression

ESS210B
Prof. Jin-Yi Yu

Linear Regression

Y=aX+b
Dependent Independent
Variable Variable

« Tofind the relationship between Y and X which yields
values of Y with the least error.
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Predictor and Predictand

U In meteorology, we want to use avariable x to predict
another variabley. In this case, the independent variable x
iscalled the “predictor”. The dependent variabley is caled
the “predictand”

Y=a+bX
the dependent variable the independent variable
the predictand the predictor

Linear Regression

O Wehave N paired data point (X;, Y;)
that we want to approximate their
Id" relationship with alinear regression:

y=a,+a-x
O The errors produced by this linear
approximation can be estimated as:

B x N N

0= =3 (-n)

i=1 i=l
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—int t QO Theleast square linear fit chooses
8y = INtercep coefficients aand b to produce a
a = slope (b) minimum value of the error Q.
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L east Square Fit

O Coefficients aand b are chosen such that the error Q is minimum:

20, 2,

da,, oa,

Q Thisleadsto:

3 .
290 _ 20,V +2a) Y % =23y =0 covariance between x and y

da,

i’lg'i= Zu,,z,\',- + 2{:|Z,\';3 - 22.\‘,—_1',- =0
oy

O Solve the above equatio e get the linear regression coefficients:

— = A
b= @ =F—Le I where( y=()-T] where ¥7= 3 (x50

a,=F-aX -
o =V varianceof x ESS2108
Prof. Jin-Yi Yu

Figure 8-8
Fitted
regression
line

ot

regression equation

regression line ——
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R2-value

Significance of the Regression Coefficients

OR2-value measures the percentage of variation
in the values of the dependent variable that can
be explained by the variation in the
independent variable.

OR2-value variesfrom 0 to 1.

UA value of 0.7654 means that 76.54% of the
variance in y can be explained by the changes
in X. The remaining 23.46% of the variationin
y is presumed to be due to random variability.
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U There are many ways to test the significance of the
regression coefficient.

U Some use t-test to test the hypothesisthat b=0.

U The most useful way for the test the significance of the
regression is use the “analysis of variance” which separates
the total variance of the dependent variable into two
independent parts. variance accounted for by the linear
regression and the error variance.
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How Good Is the Fit?

- 7_)2 Q Thequality of thelinear
Vi regression can be analyzed
R using the * Analysis of
? Z 5 Variance’.
=I(e+aThx,—y) )
—~ ¢ R Q The analysis separates the

=Z(e+y—bX +bx;~7) total variance of y (S?) into
2 the part that can be accounted
=Z(e+b(x; %)) o for by the linear regression
o2 2 2 - (?S.2) and the part that can
=ZeT+ b TI(x; - %)+ 26 %xi =¥ not be accounted for by the
regression (S2):

| S2=p?S2+S2 |

S, - p) b E(x, B
2.2
:Si +b S,
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Variance Analysis
source d.f. sums of squares [ mean squares
Regression | 1 SSR=%(4:—5)* | MSR=SSR/1
Error (N—-2)| SSE=3(y; —4:)? | MSE = SSE/(N —2)
Total (N=-1) | SST=X(vi —9)*

Table 5.1 Analysis of Variance for Linear Regression

O To calculate the total variance, we need to know the “mean” = DOF=N-1

QO If we know the mean and the regression slope (B), then the regression lineis
set = The DOF of the regressed variance isonly 1 (the slope).

O Theerror variance is determined from the difference between the total
variance (with DOF = N-1) and the regressed variance (DOF=1) = The DOF

of the error variance = (N-1)-1=N-2.
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Analysis of Variance (ANOVA)

O Wethen use F-statistics to test the ratio of the variance explained by
the regression and the variance not explained by the regression:

F = (0%S2/1) / (S2/(N-2))

O Sdect a X% confidence level regression dopein population

Q H:B=0
(i.e, variationin y is not explained by the linear regression but
rather by chance or fluctuations)
Hi:B#0

O Reject the null hypothesis at the o significance level if F>F (1, N-2)
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Source ___d.f Sams of Squares

Bagresaica | 7.8 7.18
B e TR N
Total R 7.8

¥ = 29008
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Scattering

O Oneway to estimate the “badness of fit” isto
calculate the scatter:

O Therelation between the scatter to the line of
regression in the analysis of two variablesis
like the relation between the standard
deviation to the mean in the analysis of one

2 ) 6 8 10 12 variable.

Q If linesare drawn parallel to the line of

regression at distances equal t0 * (Sy)*°
above and below the line, measured in they
direction, about 68% of the observation should
fall between the two lines.
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Correlation and Regression

U Linear Regression: Y = a+ bX
A dimensional measurement of the linear relationship
between X and Y.

= How does Y change with one unit of X?

U Linear Correlation

A non-dimensional measurement of the linear relationship
between X and Y.

= How does Y change (in standard deviation) with one
standard deviation of X?
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Linear Correlation

U The linear regression coefficient (b) depends on the unit of
measurement.

4 If we want to have a non-dimensional measurement of the
associ ation between two variables, we use the linear
correlation coefficient (r):

x'y

= the correlation coefficient; —1<r <1

__;._lN Ny T = lz )2 d = lz. o2
X ‘—Vpl(r,—.\)(/\,f\) . = N (x;—X)" an Gy = v ;=7
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Correlation and Regression

O Recall in the linear regression, we show that:

£ - P pst thefraction of the variance of y
¥ € X explained by linear regression

The square of the
correlation coefficient is
equal to thefraction of
variance explained by a
linear least-squaresfit
between two variables.
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An Example

U Suppose that the correlation coefficient between sunspots
and five-year mean global temperatureis0.5(r =0.5).

U Thefraction of the variance of 5-year mean global
temperature that is “ explained” by sunspotsisr2 = 0.25.

U The fraction of unexplained varianceis 0.75.
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Significance Test of Correlation Coefficient

O When thetrue correlation coefficient iszero (Hy: p=0 and H,: p#0)
Use Student-t to test the significance of r

W3
wflfrz

t=

and v=N-2 degree of freedom

O When thetrue correlation coefficient isnot expected to be zero
We can not use a symmetric normal distribution for the test.

We must use Fisher's Z transformation to convert the distribution of r
to anormal distribution:

1, [i+r 1, [1+p 1
Z=—| s ==1 oL g,=
2"{14} bz Zn{l—pﬂ} T w3

stdof Z H B i v

An Example

QO SupposeN =21 and r =0.8. Find the 95% confidence limitsonr.

Answer:
(1) UseFisher's Z transformation:

z =%ln{; +g'§}= 1.0986
. e (esz —1)
(2) Find the 95% significance limits L N
219605 <@y < Z+1960; (ez-uz +1)
0.6366 < uz < 1.5606
a handy way to
(3) Convert Z back tor convert Z back tor

11, = 0.6366 :lfnjll+p}:.>p:0.56
2 |1-p

(4) The 95% significance limitsare: 0.56 < p < 0.92
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Another Example

QO In astudy of the correlation between the amount of rainfall and the
quality of air pollution removed, 9 observations were made. The
sample correlation coefficient is—0.9786. Test the null hypothesis that
thereisno linear correlation between the variables. Use 0.05 level of

significance.
Answer:
1. Ho:p=0; H1: p£0
2. =0.05
3. UseFisher'sZ
1, (147 1 714p)
Z— statistic !—X 'ull [fl“ S _Efn : :\] @!u 1+ (-0.5786) 555

a 1 - (-0.9786)

Z

4.7 <Z y55(=-1.96) 2 Reject the null hypothesis
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Test of the Difference Between Two
Non-Zero Coefficients

Multiple Regression

O Wefirst convert r to Fisher’s Z statistics:

O We then assume anormal distribution for Z,-Z, and use the
z-statistic (not Fisher's Z):
_ L-Z _Azl-zq_ )

s Where'Azl —z5 = Mz T Hgy
Oz-z;

_ 2 2 _ 1 1
and 0z, —,,'ozl +0oz, = ﬁ+ [y
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O If wewant to regress y with more than one variables (X, X, Xg,.....Xp):
y=astapx) +axx; +...+ayxy

Q After perform the least-square fit and remove means from al variables:
03] + @y 4 A3 o By T, =51
@ T37 + a3 %% + Ay X9x3 + o+ Gy X2y = 2T
alm+azﬁ+a3g+....+a"a=x37y

O Solve the following matrix to obtain the regression coefficients: a,, a,,

F _—

X XX Xxx; . fa@ xy
— 5 — —
X¥ Xy XXy - @|_ Ii)’
X3xX] XXy x32 P X3y
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Fourier Transform

Q Fourier transform is an example of multiple regression. In this case, the
independent (predictor) variables are:

. 2mz 2 . Am Az
Xl =sim—-;: X2 =C0§—; X3 =sm—; X4 =COS— ...,
L L L L

O These independent variables are orthogonal to each other. That means:
L 0ifm#n
Uit = o) ot ={ | 1
0 lifm=n

Thxefore, al the off-diagonal terms are zero in the following matrix:

How Many Predictors Are Needed?

:' ;ly This demonstrates
az == Fourier analysisis
ks optimal in least

R g square sense.
' Y /
Q Wecan easily get: aj=¥2{yi-xj(zf)}
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O Very often, one predictor is afunction of the other predictors.

O It becomes an important question: How many predictors do we
need in order to make agood regression (or prediction)?

O Does increasing the number of the predictor improve the
regression (or prediction)?

O If too many predictors are used, some large coefficients may be
assigned to variables that are not really highly correlated to the
predictant (y). These coefficients are generated to help the
regression relation tofity.

0 To answer this question, we have to figure out how fast (or slow)
the “fraction of explained variance” increase with additional

number of predictors.
H o an
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Explained Variance for Multiple Regression

Q Asan example, we discuss the case of two predictors for the multiple
regression.

O We can repeat the derivation we perform for the simple linear
regression to find that the fraction of variance explained by the 2-
predictorsregression (R) is:

fl%v +’§y *zﬁy"?yru

I-r3

R = herer isthe correlation coefficient
O We can show that if 1, is smaller than or equal to a*minimum useful

correlation” value, it is not useful to include the second predictor in
theregression.

L : _ *
O Theminimum useful correlation = I’ly B IWewant Moy>l1y* 1o I

U Thisistheminimum correlation of x, with y that isrequired to improve
the R? given that X, is correlated with x;.
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An Example

Q For a 2-predictor case: ry, =r,,=r;,=0.50
If only include one predictor (x,) (r, =r;,=0) = R?>=0.25
By adding X, in the regression (r,, =r,,=0.50) = R2=0.33
In this case, the 2" predictor improve the regression.

U For a 2-predictor casel ry, =, = 0.50 but r,, = 0.25
If with only x, & R?=025
Adding x, = R2=025 (dill the same!!)
In this case, the 2 predictor is not useful. It is because

Fay STy, * 11, =0.5070.50 = 0.25
& B

Independent Predictors

U Based on the previous andysis, we wish to use predictors
that are independent of each other
2>r,=0
=> minimum useful correlation = 0.

U Theworst predictorsarer,,= 1.0

U The desire for independent predictorsis part of the
motivation for Empirical Orthogonal Function (EOF)
analysis.

U EOF attemptsto find arelatively small number of
independent quantities which convey as much of the
original information as possible without redundancy.
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