COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

SYLLABUS

Week 1 09/27,10/02,10/04 Global Energy Balance
Atmosphere Composition; Planetary Energy Balance
Greenhouse Effect; Role of Cloud

Week 2 10/09* & 10/11 Atmospheric General Circulation
*(no class on 10/09)
General Circulation in the Troposphere and Stratosphere
Jetstreams; Walker Circulation
Monsoon, Sea-land Breeze, Santa Ana Wind

Week 3 10/16 & 10/18 Oceanic General Circulation
Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
Water Mass Formation, Ekman Pumping, and Subduction
Surface Ocean Circulation: Wind-Driven
Deep Ocean Circulation: Density-Driven
Pacific Ocean, Atlantic Ocean, and Indian Ocean
Cryosphere

Week 4 10/23 & 10/25 Climate Change and Variability
Past Climate Changes
El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole

Week 5 10/30 & 11/01 Weather; Satellite Observations
Air Masses, Fronts; Major High and Low Pressure Systems
Mid-Latitude Cyclones; Tropical Hurricane
Satellite Observations

Midterm 11/09 (Friday)
Earth System Science 200a: Earth System Climatology (Fall 2007)
(http://www.ess.uci.edu/~yu/ess200a.html)

Professor Jin-Yi Yu
CH3315, 824-3878, jyyu@uci.edu

Tuesdays & Thursdays 9:00-10:20, CH1103

COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS

- "The Earth System", Kump, Kasting & Crane, Prentice Hall.
- "Understanding Weather and Climate", by Aguado and Burt, Prentice Hall.
- "Regional Oceanography: An Introduction", Tomczak & Godfrey, online.
- "Climatology: An Atmospheric Science", Oliver and Hidore, Prentice Hall.

GRADES
- Homework (40%); midterm (60%)

HOMEWORKS
- Issue and due every Thursday

SYLLABUS

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topic</th>
<th>Subtopics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09/27,10/02,10/04</td>
<td>Global Energy Balance</td>
<td>Atmosphere Composition; Planetary Energy Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greenhouse Effect; Role of Cloud</td>
</tr>
<tr>
<td>2</td>
<td>10/09* & 10/11</td>
<td>Atmospheric General Circulation</td>
<td>General Circulation in the Troposphere and Stratosphere</td>
</tr>
<tr>
<td></td>
<td>*(no class on 10/09)</td>
<td></td>
<td>Jetstreams; Walker Circulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Monsoon, Sea-land Breeze, Santa Ana Wind</td>
</tr>
<tr>
<td>3</td>
<td>10/16 & 10/18</td>
<td>Oceanic General Circulation</td>
<td>Ocean Structure; Mixed layer, Ekman Layer, and Thermocline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water Mass Formation, Ekman Pumping, and Subduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Surface Ocean Circulation: Wind-Driven</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deep Ocean Circulation: Density-Driven</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pacific Ocean, Atlantic Ocean, and Indian Ocean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryosphere</td>
</tr>
<tr>
<td>4</td>
<td>10/23 & 10/25</td>
<td>Climate Change and Variability</td>
<td>Past Climate Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole</td>
</tr>
<tr>
<td>5</td>
<td>10/30 & 11/01</td>
<td>Weather; Satellite Observations</td>
<td>Air Masses, Fronts; Major High and Low Pressure Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mid-Latitude Cyclones; Tropical Hurricane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Satellite Observations</td>
</tr>
</tbody>
</table>

Midterm 11/09 (Friday)
COURSE ESCRIPITION

This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS

- "The Earth System", Kump, Kasting & Crane, Prentice Hall.
- "Understanding Weather and Climate", by Aguado and Burt, Prentice Hall.
- "Regional Oceanography: An Introduction", Tomczak & Godfrey, online.
- "Climatology: An Atmospheric Science", Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

<table>
<thead>
<tr>
<th>SYLLABUS</th>
</tr>
</thead>
</table>
| **Week 1** | 09/27, 10/02, 10/04 | **Global Energy Balance**
Atmosphere Composition; Planetary Energy Balance
Greenhouse Effect; Role of Cloud |
| **Week 2** | 10/09* & 10/11 | *(no class on 10/09) | **Atmospheric General Circulation**
General Circulation in the Troposphere and Stratosphere
Jetstreams; Walker Circulation
Monsoon, Sea-land Breeze, Santa Ana Wind |
| **Week 3** | 10/16 & 10/18 | **Oceanic General Circulation**
Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
Water Mass Formation, Ekman Pumping, and Subduction
Surface Ocean Circulation: Wind-Driven
Deep Ocean Circulation: Density-Driven
Pacific Ocean, Atlantic Ocean, and Indian Ocean
Cryosphere |
| **Week 4** | 10/23 & 10/25 | **Climate Change and Variability**
Past Climate Changes
El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole |
| **Week 5** | 10/30 & 11/01 | **Weather; Satellite Observations**
Air Masses, Fronts; Major High and Low Pressure Systems
Mid-Latitude Cyclones; Tropical Hurricane
Satellite Observations |

Midterm | 11/09 (Friday)
COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

SYLLABUS

<table>
<thead>
<tr>
<th>Week 1</th>
<th>09/27,10/02,10/04</th>
<th>Global Energy Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Atmosphere Composition; Planetary Energy Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenhouse Effect; Role of Cloud</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2</th>
<th>10/09* & 10/11</th>
<th>Atmospheric General Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*(no class on 10/09)</td>
<td>General Circulation in the Troposphere and Stratosphere</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jetstreams; Walker Circulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monsoon, Sea-land Breeze, Santa Ana Wind</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 3</th>
<th>10/16 & 10/18</th>
<th>Oceanic General Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ocean Structure; Mixed layer, Ekman Layer, and Thermocline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Mass Formation, Ekman Pumping, and Subduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface Ocean Circulation: Wind-Driven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep Ocean Circulation: Density-Driven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pacific Ocean, Atlantic Ocean, and Indian Ocean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryosphere</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 4</th>
<th>10/23 & 10/25</th>
<th>Climate Change and Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Past Climate Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 5</th>
<th>10/30 & 11/01</th>
<th>Weather; Satellite Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Air Masses, Fronts; Major High and Low Pressure Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mid-Latitude Cyclones; Tropical Hurricane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Satellite Observations</td>
</tr>
</tbody>
</table>

Midterm 11/09 (Friday)
Earth System Science 200a: Earth System Climatology (Fall 2007)
(http://www.ess.uci.edu/~yu/ess200a.html)

Professor Jin-Yi Yu
CH3315, 824-3878, jyyu@uci.edu

Tuesdays & Thursdays 9:00-10:20, CH1103

COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

| SYLLABUS |
|------------------|------------------|
| Week 1 09/27,10/02,10/04 | **Global Energy Balance**
Atmosphere Composition; Planetary Energy Balance
Greenhouse Effect; Role of Cloud |
| Week 2 10/09* & 10/11 *(no class on 10/09) | **Atmospheric General Circulation**
General Circulation in the Troposphere and Stratosphere
Jetstreams; Walker Circulation
Monsoon, Sea-land Breeze, Santa Ana Wind |
| Week 3 10/16 & 10/18 | **Oceanic General Circulation**
Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
Water Mass Formation, Ekman Pumping, and Subduction
Surface Ocean Circulation: Wind-Driven
Deep Ocean Circulation: Density-Driven
Pacific Ocean, Atlantic Ocean, and Indian Ocean
Cryosphere |
| Week 4 10/23 & 10/25 | **Climate Change and Variability**
Past Climate Changes
El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole |
| Week 5 10/30 & 11/01 | **Weather; Satellite Observations**
Air Masses, Fronts; Major High and Low Pressure Systems
Mid-Latitude Cyclones; Tropical Hurricane
Satellite Observations |
| **Midterm** 11/09 (Friday) |
COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“*The Earth System*, Kump, Kasting & Crane, Prentice Hall.
“*Understanding Weather and Climate*, by Aguado and Burt, Prentice Hall.
“*Regional Oceanography: An Introduction*, Tomczak & Godfrey, online.
“*Climatology: An Atmospheric Science*, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

SYLLABUS

| Week 1 | 09/27,10/02,10/04 | **Global Energy Balance**
Atmosphere Composition; Planetary Energy Balance
Greenhouse Effect; Role of Cloud |
|-------|------------------|---------------------------|
| Week 2 | 10/09* & 10/11 *(no class on 10/09) | **Atmospheric General Circulation**
General Circulation in the Troposphere and Stratosphere
Jetstreams; Walker Circulation
Monsoon, Sea-land Breeze, Santa Ana Wind |
| Week 3 | 10/16 & 10/18 | **Oceanic General Circulation**
Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
Water Mass Formation, Ekman Pumping, and Subduction
Surface Ocean Circulation: Wind-Driven
Deep Ocean Circulation: Density-Driven
Pacific Ocean, Atlantic Ocean, and Indian Ocean
Cryosphere |
| Week 4 | 10/23 & 10/25 | **Climate Change and Variability**
Past Climate Changes
El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole |
| Week 5 | 10/30 & 11/01 | **Weather; Satellite Observations**
Air Masses, Fronts; Major High and Low Pressure Systems
Mid-Latitude Cyclones; Tropical Hurricane
Satellite Observations |
| Midterm | 11/09 (Friday) |

ESS200A: EARTH SYSTEM CLIMATOLOGY
COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“*The Earth System*, Kump, Kasting & Crane, Prentice Hall.
“*Understanding Weather and Climate*, by Aguado and Burt, Prentice Hall.
“*Regional Oceanography: An Introduction*, Tomczak & Godfrey, online.
“*Climatology: An Atmospheric Science*, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

| SYLLABUS |
|------------------|---|---|
| Week 1 09/27,10/02,10/04 | Global Energy Balance | Atmosphere Composition; Planetary Energy Balance |
| | | Greenhouse Effect; Role of Cloud |
| Week 2 10/09* & 10/11 *(no class on 10/09) | Atmospheric General Circulation | General Circulation in the Troposphere and Stratosphere |
| | | Jetstreams; Walker Circulation |
| | | Monsoon, Sea-land Breeze, Santa Ana Wind |
| Week 3 10/16 & 10/18 | Oceanic General Circulation | Ocean Structure; Mixed layer, Ekman Layer, and Thermocline |
| | | Water Mass Formation, Ekman Pumping, and Subduction |
| | | Surface Ocean Circulation: Wind-Driven |
| | | Deep Ocean Circulation: Density-Driven |
| | | Pacific Ocean, Atlantic Ocean, and Indian Ocean |
| | | Cryosphere |
| Week 4 10/23 & 10/25 | Climate Change and Variability | Past Climate Changes |
| | | El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole |
| Week 5 10/30 & 11/01 | Weather; Satellite Observations | Air Masses, Fronts; Major High and Low Pressure Systems |
| | | Mid-Latitude Cyclones; Tropical Hurricane |
| | | Satellite Observations |

Midterm 11/09 (Friday)
COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday
Earth System Science 200a: Earth System Climatology (Fall 2007)
(http://www.ess.uci.edu/~yu/ess200a.html)

Professor Jin-Yi Yu
CH3315, 824-3878, jyyu@uci.edu
Tuesdays & Thursdays 9:00-10:20, CH1103

COURSE DESCRIPTION

This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS

“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

<table>
<thead>
<tr>
<th>SYLLABUS</th>
</tr>
</thead>
</table>
| **Week 1** 09/27, 10/02, 10/04 | **Global Energy Balance**
Atmosphere Composition; Planetary Energy Balance
Greenhouse Effect; Role of Cloud |
| **Week 2** 10/09* & 10/11 *(no class on 10/09) | **Atmospheric General Circulation**
General Circulation in the Troposphere and Stratosphere
Jetstreams; Walker Circulation
Monsoon, Sea-land Breeze, Santa Ana Wind |
| **Week 3** 10/16 & 10/18 | **Oceanic General Circulation**
Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
Water Mass Formation, Ekman Pumping, and Subduction
Surface Ocean Circulation: Wind-Driven
Deep Ocean Circulation: Density-Driven
Pacific Ocean, Atlantic Ocean, and Indian Ocean
Cryosphere |
| **Week 4** 10/23 & 10/25 | **Climate Change and Variability**
Past Climate Changes
El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole |
| **Week 5** 10/30 & 11/01 | **Weather; Satellite Observations**
Air Masses, Fronts; Major High and Low Pressure Systems
Mid-Latitude Cyclones; Tropical Hurricane
Satellite Observations |

Midterm 11/09 (Friday)

ESS200A: EARTH SYSTEM CLIMATOLOGY
COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

SYLLABUS

Week 1 09/27, 10/02, 10/04 Global Energy Balance
Atmosphere Composition; Planetary Energy Balance
Greenhouse Effect; Role of Cloud

Week 2 10/09 & 10/11 Atmospheric General Circulation
General Circulation in the Troposphere and Stratosphere
Jetstreams; Walker Circulation
Monsoon, Sea-land Breeze, Santa Ana Wind
*(no class on 10/09)

Week 3 10/16 & 10/18 Oceanic General Circulation
Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
Water Mass Formation, Ekman Pumping, and Subduction
Surface Ocean Circulation: Wind-Driven
Deep Ocean Circulation: Density-Driven
Pacific Ocean, Atlantic Ocean, and Indian Ocean
Cryosphere

Week 4 10/23 & 10/25 Climate Change and Variability
Past Climate Changes
El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole

Week 5 10/30 & 11/01 Weather; Satellite Observations
Air Masses, Fronts; Major High and Low Pressure Systems
Mid-Latitude Cyclones; Tropical Hurricane
Satellite Observations

Midterm 11/09 (Friday)
Earth System Science 200a: Earth System Climatology (Fall 2007)
(http://www.ess.uci.edu/~yu/ess200a.html)

Professor Jin-Yi Yu
CH3315, 824-3878, jyyu@uci.edu

Tuesdays & Thursdays 9:00-10:20, CH1103

COURSE DESCRIPTION
This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them. The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

TEXTBOOKS
“Understanding Weather and Climate”, by Aguado and Burt, Prentice Hall.
“Regional Oceanography: An Introduction”, Tomczak & Godfrey, online.
“Climatology: An Atmospheric Science”, Oliver and Hidore, Prentice Hall.

GRADES: Homework (40%); midterm (60%)

HOMEWORKS: Issue and due every Thursday

SYLLABUS

| Week 1 | 09/27, 10/02, 10/04 | Global Energy Balance
| | | Atmosphere Composition; Planetary Energy Balance
| | | Greenhouse Effect; Role of Cloud
| Week 2 | 10/09*, 10/11 | Atmospheric General Circulation
| | *(no class on 10/09) | General Circulation in the Troposphere and Stratosphere
| | | Jetstreams; Walker Circulation
| | | Monsoon, Sea-land Breeze, Santa Ana Wind
| Week 3 | 10/16 & 10/18 | Oceanic General Circulation
| | | Ocean Structure; Mixed layer, Ekman Layer, and Thermocline
| | | Water Mass Formation, Ekman Pumping, and Subduction
| | | Surface Ocean Circulation: Wind-Driven
| | | Deep Ocean Circulation: Density-Driven
| | | Pacific Ocean, Atlantic Ocean, and Indian Ocean
| | | Cryosphere
| Week 4 | 10/23 & 10/25 | Climate Change and Variability
| | | Past Climate Changes
| | | El Niño Southern Oscillation; Arctic Oscillation; Ozone Hole
| Week 5 | 10/30 & 11/01 | Weather; Satellite Observations
| | | Air Masses, Fronts; Major High and Low Pressure Systems
| | | Mid-Latitude Cyclones; Tropical Hurricane
| | | Satellite Observations

Midterm 11/09 (Friday)

ESS200A: EARTH SYSTEM CLIMATOLOGY