

Shadow Area = πr_n^2 ESS200A Prof. Jin-Yi Yu

Solar Flux Density Reaching Earth

 \Box Solar Constant (S)

The solar energy density at the mean distance of Earth from the sun (1.5 x 10^{11} m)

 $S = L / (4 \mathbf{p} d^2)$ $= (3.9 \text{ x } 10^{26} \text{ W}) / [4 \text{ x } 3.14 \text{ x } (1.5 \text{ x } 10^{11} \text{ m})^2]$ $= 1370 \text{ W/m}^2$

Solar Energy Absorbed by Earth

(from *The Earth System*)

- Solar Constant (S) = solar flux density reaching the Earth $= 1370 \text{ W/m}^2$
- Solar energy incident on the Earth = S x the "flat" area of the Earth = S x πR^2_{Earth}
- Solar energy absorbed by the Earth = (received solar flux) - (reflected solar flux) $= S \pi R^{2}_{Earth} - S \pi R^{2}_{Earth} x A$
- $= \mathbf{S} \mathbf{p} \mathbf{R}^{2}_{\text{Earth}} \mathbf{x} \quad (1-\mathbf{A})$

A is the *planetary albedo* of the Earth, which is about 0.3.

ESS200A Prof. Jin-Yi Yu

What Happens After the Earth Absorbs Solar Energy?

- □ The Earth warms up and has to emit radiative condition.
- □ The radiation emitted by the Earth is called "terrestrial radiation" which is assumed to be like blackbody radiation.

energy back to the space to reach a equilibrium

The Stefan-Boltzmann Law

The energy flux emitted by a blackbody is related to the fourth power of the body's absolute temperature

 $\mathbf{F} = \mathbf{sT}^4$ where σ is 5.67x10⁻⁸ W/m²/K

Energy emitted from the Earth = (blackbody emission) x (total area of Earth) $= (\sigma T_{e}^{4}) \times (4\pi R_{Earth}^{2})$

Blackbody Radiation

Blackbody

A blackbody is something that emits (or absorbs) electromagnetic radiation with 100% efficiency at all wavelength.

Blackbody Radiation

The amount of the radiation emitted by a blackbody depends on the absolute temperature of the blackbody.

Different Wavelengths of Solar and Earth's Radiation

Normalized Planck Function

more energy at all wavelengths.

Where Does the Solar Energy Go?

(from NCAR/COMET website)

Incoming solar energy (100)

- 70% absorbed
- 45% by Earth's surface (ocean + land)
- 25% by the atmosphere and clouds
- 30% reflected and scattered back
- 20% by clouds
- 6% by the atmosphere
- 4% by surface

ESS200A Prof. Jin-Yi Yu

Where Is Earth's Radiation Emitted From?

(from *The Earth System*)

- Radiation back to Space (70 Units)
- 70 (units) radiation back to space
- 66% by the atmosphere
- 4% by surface (through clear sky)
- Greenhouse emission (back to surface) 88% (of solar radiation)

Important Roles of Clouds In Global Climate

(top from *The Earth System Computer Constants* (top f

