Earth System Climatology (ESS220)

- Course Time Lectures: Tu, Th 9:30-10:50 Discussion: 3315 Croul Hall
- Text Book
 The Earth System, Kump, Kasting, and Crane, Prentice-Hall
- Grade Homework (40%), Final (60%)
- Homework
 Issued and due every Tuesday

ESS220 Prof. Jin-Yi Yu

Course Description

- □ This course offers an overview of Earth's climate system by describing the major climatological features in the atmosphere and oceans and by explaining the physical principals behind them.
- □ The course begins with an introduction of the global energy balance that drives motions in the atmosphere and oceans, then describes the basic structures and general circulations of the atmosphere and oceans, and finally look into major climate change and variation phenomena.

		SYLLABUS
Week 1	9/23 & 9/28	Overview & Global Energy Balance Atmosphere Composition; Planetary Energy Balance Greenhouse Effect: Role of Cloud
Week 2	9/30 & 10/5	Atmospheric General Circulation General Circulation in the Troposphere and Stratosphere Jetstreams; Walker Circulation Monsoon, Sea-land Breaze, Santa Ana Wind
Week 3	10/7 & 10/12	Decanic General Circulation: Jonato Human Ocean Structure; Mixed layer, Ekman Layer, and Thermoclin Water Mass Formation, Ekman Pumping, and Subduction Surface Ocean Circulation: Wind-Oriven Deep Ocean Circulation: Density-Driven Pacific Ocean, Allantic Ocean, and Indian Ocean
Week 4	10/14 & 10/19	Cryosphere Climate Variability Feedback and Sensitivity El Niño Southern Oscillation
Week 5	10/21	Arctic Oscillation; North Atlantic Oscillation; Ozone Hole Past and Future Climate Changes Tectonic-Scale, Orbital-Scale Climate Changes Future Climate Projection
Final	10/26	- and - on and - represent

ESS220 Prof. Jin-Yi Yu

Ionosphere and AM Radio

Copyright © 2007 Pearson Prentice Hall, Inc. (from Understanding Weather & Climate)

- The D- and E-layers absorb AM radio, while the F-layer reflect radio waves.
- When night comes, the D-layer disappears and the E-layer weakens. Radio waves are able to reach the F-layer and get reflected further.
- □ The repeated refection of radio waves between Earth surface and the F-layer allows them to overcome the effect of Earth's curvature.

ESS220 Prof. Jin-Yi Yu

	t Happe	ned to H ₂ O?
Table 1.2 An inventory of the hyd	lrosphere ^{s,b}	□ The atmosphere can only small fraction of the mass of water
Component	Percentage of mass of hydrosphere	vapor that has been injected int
Oceans	97.	it during volcanic eruption, most of the water vapor was
Ice Fresh water (underground)	2.4	1
Fresh water in lakes, rivers, etc.	0.02	condensed into clouds and rains
Atmosphere	0.001	and gave rise to oceans.
^a Total mass = 1.36 × 10 ²¹ kg over surface of earth. ^b Based on data given in H. Present, Past and Future," Methu 1972, p. 482.	H. Lamb, "Climate:	→ The concentration of water vapor in the atmosphere was substantially reduced.

Saturation Vapor Pressure -109 -50 0° (°C) vapor de<u>s</u> 40 -40 (°C) -30 -20 -10 20 30 -22 32 50 68 86 104 (°F) Temperature

□ Saturation vapor pressure describes how much water vapor is needed to make the air saturated at any given temperature.

> □ Saturation vapor pressure depends primarily on the air temperature in the following way:

ESS220 Prof. Jin-Yi Yu

exponentially with air temperature. L: latent heat of evaporation; α : specific volume of vapor and liquid

ESS220 Prof. Jin-Yi Yu

□ Nitrogen (N2):

(1) is inert chemically,

(2) has molecular speeds too slow to escape to space,

(3) is not very soluble in water.

→ The amount of nitrogen being cycled out of the atmosphere was limited.

 \rightarrow Nitrogen became the most abundant gas in the atmosphere.

ESS220 Prof. Jin-Yi Yu

Where Did O₂ Come from?

RUBE 2-35 Photosynthesis in the ocean Sunlight penetrating the surface ocean causes photosynthesis by microscopic plants. As they die, their nutrient-bearing organic tissue descends to the seafloor. Oxidation of this tissue at depth returns nutrients and inorganic carbon to the surface ocean in regions of pupelling.

(from Earth's Climate: Past and Future)

Photosynthesis was the primary process to increase the amount of oxygen in the atmosphere.

- ➔ Primitive forms of life in oceans began to produce oxygen through photosynthesis probably 2.5 billion years ago.
- → With the concurrent decline of CO2, oxygen became the second most abundant atmospheric as after nitrogen.

□ The reasons for the inversion in the stratosphere is due to the ozone absorption of ultraviolet solar

Although maximum ozone concentration occurs at 25km, the lower air density at 50km allows solar energy to heat up temperature there at a much greater degree.

absorbed in the upper stratosphere and can not reach the level of

ESS220 Prof. Jin-Yi Yu

