Earth System Science 200: Global Physical Climatology (Fall 2019) (http://www.ess.uci.edu/~yu/ess200.html)

Professor Jin-Yi Yu CH3315, 824-3878, jyyu@uci.edu

Final

12/10 (10:30-12:30)

Tuesdays & Thursdays 11:00-12:20pm, PSCB240

COURSE DESCRIPTION

This course builds a physical understanding of Earth's climate system. An overview of Earth's climate system and energy budget. Large-scale circulations, key physical processes, and climate sensitivity of the atmosphere, ocean, land surface, and cryosphere.

TEXTBOOKs

Global Physical Climatology (2nd Edition), by Dennis Hartmann, Elsevier Inc. (required)
The Earth System (3rd Edition), by Kump et al., Prentice Hall (optional)
Meteorology Today (11th Edition), by Donald Ahrens, Brooks/Cole (optional)

GRADES

Homework (30%); midterm (35%); Final (35%)

HOMEWORKS

Issue and due every Thursday

		SYLLABUS
Week 0	9/26	Introduction to the Climate System (Ch.1) Atmospheric properties and structures World Ocean, land surface, and cryosphere
Week 1	10/1 & 10/3	The Global Energy Balance (Ch.2) Planetary balance, greenhouse effect Global radiative energy balance, poleward energy flux
Week 2	10/8 & 10/10	Atmospheric Radiative Transfer and Climate (Ch.3) Solar and infrared radiation, selective absorption and emission Cloud and radiation, radiative-convective equilibrium
Week 3	10/15 & 10/17 (add lecture: 1:30-2:50pm)	The Energy Balance of the Surface (Ch.4) Surface Properties, Storage, Heating, Albedo, Emission Planetary boundary layer, drag, mixing, fluxes
Week 4	10/22 & 10/24 (add lecture: 1:30-2:50pm)	Atmospheric General Circulation and Climate (Ch.6) Zonal-mean circulation, eddies Angular momentum, moist static energy
Week 5	10/29 & 10/31 (add lecture: 1:30-2:50pm)	The Ocean General Circulation and Climate (Ch.7) Ocean properties and structures, water mass Wind-driven circulation, thermohaline circulation, and transports
Week 6	11/5 & 11/7 (add lecture: 1:30-2:50pm)	cont. (Ch.7)
Week 7	11/12 & <mark>11/14</mark> (11/13?)	Cryosphere (Kump et al. 2016; Ch. 6) Glaciers, ice sheets, mass balance, sea-Level
Week 8	11/19 & 11/21	Natural Intraseasonal and Interannual Variability (Ch.8) Internal atmospheric variability, El Niño and the southern oscillation, Decadal variations of weather and climate
Week 9	11/26 & 11/28 (Holiday)	Climate Sensitivity and Feedback Mechanisms (Ch.10) Sensitivity and feedback Water vapor, ice-albedo, cloud, dynamical
Week 10	12/3 & 12/5	Natural Climate Change (Ch.12) Natural solar, aerosol, volcanic forcing Past climate changes