Lecture 1: Introduction to the Climate System

- Chapter 1: Introduction to the Climate System
- Abstract
1.1. Atmosphere, ocean, and land surface
\circ 1.2. Atmospheric temperature $\longrightarrow \mathrm{T}$
- 1.3. Atmospheric composition \longrightarrow mass (\& radiation)
- 1.4. Hydrostatic balance \qquad $\mathrm{T} \&$ mass relation in vertical
- 1.5. Atmospheric humidity \longrightarrow mass (\& energy, weather..)
- 1.6. Atmospheric thermodynamics, vertical stability and lapse rate \rightarrow Energy $\boldsymbol{\rightarrow} \mathrm{T} \boldsymbol{\rightarrow}$ vertical stability $\boldsymbol{\rightarrow}$ vertical motion \rightarrow thunderstorm
\circ 1.7. The world ocean
- 1.9. The land surfaceWhat are included in Earth's climate system?What are the general properties of the Atmosphere?How about the ocean, cryosphere, and land surface?
$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS200 }}$

Earth's Climate System

Solid Earth
Energy, Water, and Biogeochemistry Cycles

The ultimate driving force to Earth's climate system is the heating from the Sun.

The solar energy drives three major cycles (energy, water, and biogeochemisty) in the climate system.

Thickness of the Atmosphere

The thickness of the atmosphere is only about 2%
90\% of Earth's thickness (Earth's radius $=\sim 6400 \mathrm{~km}$).

- Most of the atmospheric mass is confined in the lowest 100 km above the sea level.

Because of the shallowness of the atmosphere, its motions over large areas are primarily horizontal.
\rightarrow Typically, horizontal wind speeds are a thousands time greater than vertical wind speeds.
(But the small vertical displacements of air have an important impact on the state of the atmosphere.)
(5) ${ }_{\text {Ess200 }}^{\text {Prof. Jin-XiYu }}$

Vertical Structure of the Atmosphere
Composition of the Atmosphere
(inside the DRY homosphere)

Figure 12.2 Composition of dry, aerosol-free air in volume percent. Three gases-nitrogen, oxygen, and argonmake up 99.96 percent of the air.

Origins of the Atmosphere

- When the Earth was formed 4.6 billion years ago, Earth's atmosphere was probably mostly hydrogen (H) and helium (He) plus hydrogen compounds, such as methane $\left(\mathrm{CH}_{4}\right)$ and ammonia $\left(\mathrm{NH}_{3}\right)$.
$\boldsymbol{\rightarrow}$ Those gases eventually escaped to the space.

The release of gases from rock through volcanic eruption (so-called outgassing) was the principal source of atmospheric gases.
\rightarrow The primeval atmosphere produced by the outgassing was mostly carbon dioxide $\left(\mathbf{C O}_{2}\right)$ with some $\operatorname{Nitrogen}\left(\mathbf{N}_{\mathbf{2}}\right)$ and water vapor $\left(\mathbf{H}_{2} \mathbf{O}\right)$, and trace amounts of other gases.

What Happened to $\mathrm{H}_{2} \mathrm{O}$?

The atmosphere can only hold small fraction of the mass of apor that has been injected into it during volcanic eruption, most of the water apor was condensed into clouds and rains and gave rise to

The concentration of water vapor in the atmosphere was substantially reduced.

What Happened to N_{2} ?

Nitrogen (N 2):
(1) is inert chemically,
(2) has molecular speeds too slow to escape to space,
(3) is not very soluble in water.
\rightarrow The amount of nitrogen being cycled out of the atmosphere was limited.
\rightarrow Nitrogen became the most abundant gas in the atmosphere.

Where Did O_{2} Come from?

Filine $2 \cdot-35$ Photosynthesis in the ocan Sunight
 organic tissue descends to the seafloor. Oxidation of this
tissue a depect returns nutrients and inorganic carbon to tissue at depth returns nutrients and inorganic carbon to
the surface ocean in regions of upwelling
(from Earth's Climate: Past and Future)

Photosynthesis was the primary process to increase the amount of oxygen in the atmosphere.
\rightarrow Primitive forms of life in oceans began to produce oxygen through photosynthesis probably 2.5 billion years ago.
\rightarrow With the concurrent decline of CO 2 , oxygen became the second most abundant atmospheric as after nitrogen.

Where Did Argon Come from?

\square Radioactive decay in the planet's bedrock added argon (Ar) to the evolving atmosphere.
\rightarrow Argon became the third abundant gas in the atmosphere.

Key Atmospheric Properties

$\mathbf{T} \mathbf{P} \mathbf{q} \mathbf{U}, \mathbf{v}, \boldsymbol{\omega}$

Units of Air Temperature

Vertical Thermal Structure

Troposphere ("overturning" sphere)

Standard Atmosphere

contains 80% of the mass

- surface heated by solar radiation
- strong vertical motion
- where most weather events occur

Stratosphere ("layer" sphere) middle
weak vertical motions \quad atmosphere
dominated by radiative processes

- heated by ozone absorption of solar
ultraviolet (UV) radiation
- warmest (coldest) temperatires at summer (winter) pole
Mesosphere
- heated by solar ratiation at the base
- heat dispersed upward by vertical motion

Thermosphere

- very little mass

Stratosphere

The reasons for the inversion in the stratosphere is due to the ozone absorption of ultraviolet solar energy.
Although maximum ozone concentration occurs at 25 km , the lower air density at 50 km allows solar energy to heat up temperature there at a much greater degree.

Also, much solar energy is absorbed in the upper stratosphere and can not reach the level of ozone maximum

Mesosphere

Standard Atmosphere

There is little ozone to absorb solar energy in the mesosphere, and therefore, the air temperature in the mesosphere decreases with height.

I Also, air molecules are able to lose more energy than they absorb. This cooling effect is particularly large near the top of the mesosphere.

Thermosphere

Standard Atmosphere

In thermosphere, oxygen molecules absorb solar rays and warms the air

Because this layer has a low air density, the absorption of small amount of solar energy can cause large temperature increase.
The air temperature in the thermosphere is affected greatly by solar activity.

- The global average temperature at the surface of Earth is about 288 K , $15^{\circ} \mathrm{C}$, or $59^{\circ} \mathrm{F}$.
\square In Southern Hemisphere winter, the polar stratosphere is colder than 180 K , and is the coldest place in the atmosphere, even colder than the tropical tropopause.
- The Northern Hemisphere stratosphere does not get as cold, on average, because planetary Rossby waves generated by surface topography and east-west surface temperature variations transport hea to the pole during sudden stratospheric warming events.

Why Sudden Warming?

Planetary-scale waves propagating from the troposphere (produced by big mountains) into the stratosphere.
Those waves interact with the polar vortex to break down the polar vortex.There are no big mountains in the Southern Hemisphere to produce planetary-scale waves.Less (?) sudden warming in the southern polar vortex. .

Why No Ozone Hole in Artic?
Minimum Air Temperatures in the
Polar Lower Stratosphere

(from WMO Report 2003)

$\underset{\text { Prof. Jin-Yi Yu }}{\text { ES20 }}$

The 1997 Ozone Hole

Antarctic Ozone Hole

- The decrease in ozone near the South Pole is most striking near the spring time (October)
\square During the rest of the year, ozone levels have remained close to normal in the region.
(from The Earth System)

Polar Stratospheric Clouds (PSCs)

(Sweden, January 2000; from NASA website)

- In winter the polar stratosphere is so cold $\left(-80^{\circ} \mathrm{C}\right.$ or below) that certain trace atmospheric constituents can condense.
- These clouds are called "polar stratospheric clouds" (PSCs).
- The particles that form typically consist of a mixture of water and nitric acid (HNO3).
- The PSCs alter the chemistry of the lower stratosphere in two ways: (1) by coupling between the odd nitrogen and chlorine cycles (2) by providing surfaces on which heterogeneous reactions can occur.
$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS200 }}$

Ozone Hole Depletion

Long Antarctic winter (May through September)
\rightarrow The stratosphere is cold enough to form PSCs
\rightarrow PSCs deplete odd nitrogen (NO)
\rightarrow Help convert unreactive forms of chlorine (ClONO 2 and HCl) into more reactive forms (such as Cl 2).
\rightarrow The reactive chlorine remains bound to the surface of clouds particles.
\rightarrow Sunlight returns in springtime (September)
\rightarrow The sunlight releases reactive chlorine from the particle surface.
\rightarrow The chlorine destroy ozone in October.
\rightarrow Ozone hole appears.
\rightarrow At the end of winter, the polar vortex breaks down.
\rightarrow Allow fresh ozone and odd nitrogen to be brought in from low latitudes.
\rightarrow The ozone hole recovers (disappears) until next October.

Dry Adiabatic Lapse Rate

- Air parcels that do not contain cloud (are not saturated) cool at the dry adiabatic lapse rate as they rise through the atmosphere
- Dry adiabatic lapse rate $=10^{\circ} \mathrm{C} / 1 \mathrm{~km}$
$\underset{\substack{\text { EsSot.Jin-Yi Yu } \\ \text { Pron }}}{ }$

Air parcels that get saturated they rise will cool at a rate smaller than the dry adiabatic lapse rate due the heating produced by the condensation of water vapor.

- This moist adiabatic lapse rate is not a constant but determine by considering the combined effects of expansion cooling and latent heating.
- In the lower troposphere, the rate is $10^{\circ} \mathrm{C} / \mathrm{km}-4^{\circ} \mathrm{C} / \mathrm{km}=6^{\circ} \mathrm{C} / \mathrm{km}$.
- In the middle troposphere, the rate is $10^{\circ} \mathrm{C} / \mathrm{km}-2^{\circ} \mathrm{C} / \mathrm{km}=8^{\circ} \mathrm{C} / \mathrm{km}$.
- Near tropopause, the rate is $10^{\circ} \mathrm{C} / \mathrm{km}-0^{\circ} \mathrm{C} / \mathrm{km}=10^{\circ} \mathrm{C} / \mathrm{km}$
$\underset{\text { Erof. Jin-Yi Yu }}{\text { ESSO20 }}$

Static Stability of the Atmosphere

(from Meteorology Today)
$\Gamma \mathrm{e}=$ environmental lapse rate $\Gamma \mathrm{d}=$ dry adiabatic lapse rate $\Gamma \mathrm{m}=$ moist adiabatic lapse rate

- Absolutely Stable

$$
\Gamma \mathrm{e}<\Gamma \mathrm{m}
$$

- Absolutely Unstable

$$
Г \mathrm{e}>Г \mathrm{~d}
$$

- Conditionally Unstable
$\Gamma \mathrm{m}<\Gamma \mathrm{e}<\Gamma \mathrm{d}$

Absolutely Unstable Atmosphere
Conditionally Unstable Atmosphere

Air Pressure Can Be Explained As:

The bombardment of air molecules on a surface (due to motion)

Air Mass and Pressure

(from Meteorology Today)

Atmospheric pressure tells you how much atmospheric mass is above a particular altitude.

- Atmospheric pressure decreases by about 10 mb for every 100 meters increase in elevation.

$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS200 }}$

Air Pressure

Units of Atmospheric Pressure

- Pascal (Pa): a SI (Systeme Internationale) unit for air pressure.

1 Pa $=$ a force of 1 newton acting on a surface of one square meter
1 hectopascal $(h P a)=1$ millibar $(m b) \quad[$ hecto $=$ one hundred $=100]$
Bar: a more popular unit for air pressure.
1 bar $=$ a force of 100,000 newtons acting on a surface of one square meter
$=100,000 \mathrm{~Pa}$
$=1000 \mathrm{hPa}$
$=1000 \mathrm{mb}$
\square One atmospheric pressure = standard value of atmospheric pressure at lea level $=1013.25 \mathrm{mb}=1013.25 \mathrm{hPa}$

How Soon Pressure Drops With Height?

In the ocean, which has an essentially constant density, pressure increases linearly with depth.
In the atmosphere, both pressure and density decrease exponentially with elevation.

\square It is useful to examine horizontal pressure differences across space.
Pressure maps depict isobars, lines of equal pressure.
Through analysis of isobaric charts, pressure gradients are apparent.
Steep (weak) pressure gradients are indicated by closely (widely) spaced isobars.
2. $\underset{\text { ESS200 }}{\text { Prof. Jin-Yi Y }}$

Pressure Gradients

- Pressure Gradients
- The pressure gradient force initiates movement of atmospheric mass, wind, from areas of higher to areas of lower pressure
- Horizontal Pressure Gradients
- Typically only small gradients exist across large spatial scales (1mb/100km)
- Smaller scale weather features, such as hurricanes and tornadoes, display larger pressure gradients across small areas ($1 \mathrm{mb} / 6 \mathrm{~km}$)
- Vertical Pressure Gradients
- Average vertical pressure gradients are usually greater than extreme examples of horizontal pressure gradients as pressure always decreases with altitude $(1 \mathrm{mb} / 10 \mathrm{~m})$

Why is vertical wind so weak?

Hydrostatic Balance in the Vertical

What Does Hydrostatic Balance Tell Us?

\square The hydrostatic equation tells us how quickly air pressure drops wit height.
\rightarrow The rate at which air pressure decreases with height $(\Delta \mathrm{P} / \Delta \mathrm{z})$ is equal to the air density (ρ) times the acceleration of gravity (g)

The Ideal Gas Law

- An equation of state describes the relationship among pressure, temperature, and density of any material.

All gases are found to follow approximately the same equation of state, which is referred to as the "ideal gas law (equation)".

- Atmospheric gases, whether considered individually or as a mixture, obey the following ideal gas equation:

gas constant (its value depends on the gas considered)
(3) $\underset{\text { ESrof. Jin-Yi } \mathrm{Y}}{\mathrm{ES}}$

The Scale Height of the Atmosphere

> "Scale height is a general way to describe how a value fades away and it is commonly used to describe the atmosphere of a planet. It is the vertical distance over which the density and pressure fall by a factor of $1 / \mathrm{e}$. These values fall by an additional factor of $1 / \mathrm{e}$ for each additional scale height H . Thus, it describes the degree to which the atmosphere "hugs" the planet."
\square The atmospheric pressure decreases exponentially with height
Since $P=\rho R T$ (the ideal gas law), the hydrostatic equation becomes:

$$
\mathrm{dP}=-\mathrm{P} / \mathrm{RT} \times \mathrm{gdz}
$$

$\rightarrow \mathrm{dP} / \mathrm{P}=-\mathrm{g} / \mathrm{RT} \times \mathrm{dz}$
$\rightarrow \mathrm{P}=\mathrm{P}_{\mathrm{s}} \exp (-\mathrm{gz} / \mathrm{RT})$
$\rightarrow \mathrm{P}=\mathrm{P}_{\mathrm{s}} \exp (-\mathrm{z} / \mathrm{H})$

The Scale Height of the Atmosphere

One way to measure how soon the air runs out in the atmosphere is to calculate the scale height, which is about $10 \mathbf{k m}$ (or $7.6 \mathbf{~ k m}$; for the mean temperature of Earth's atmosphere).
Over this vertical distance, air pressure and density decrease by 37% of its surface values.
\square If pressure at the surface is 1 atmosphere, then it is 0.37 atmospheres at a height of $10 \mathrm{~km}, 0.14(0.37 \mathrm{x} 0.37)$ at 20 $\mathrm{km}, 0.05(0.37 \times 0.37 \mathrm{x} 0.37)$ at 30 km , and so on.
\square Different atmospheric gases have different values of scale height.
$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS }}$

A Mathematic Formula of Scale Height

\square The heavier the gas molecules weight $(\mathrm{m}) \rightarrow$ the smaller the scale height for that particular gas
The higher the temperature $(\mathrm{T}) \rightarrow$ the more energetic the air molecules \rightarrow the larger the scale height
The larger the gravity (g) $\boldsymbol{\rightarrow}$ air molecules are closer to the surface $\boldsymbol{\rightarrow}$ the smaller the scale height

- H has a value of about 10 km for the mixture of gases in the atmosphere, but H has different values for individual gases.
 $\underset{\substack{\text { Ess200 } \\ \text { Prof Jin-Yi Yu }}}{ }$

Temperature and Pressure

Why Is Water Vapor Important?

OOver 70% of the planet is covered by water
\square Water is unique in that it can simultaneously exist in all three states (solid, liquid, gas) at the same temperature

Water is able to shift between states very easily
Atmospheric humidity is the amount of water vapor carried in the air.
Humidity = moisture in the air
Atmospheric water vapor is also the most important greenhouse gas in the atmosphere.
(\%) ${ }_{\text {Ess200 }}^{\text {Prof. Jin-Vi Yuu }}$

Phase Changes of Water

Water Vapor In the Air

(from Meteorology: Understanding the Atmosphere)

Latent heat is the heat released or absorbed per unit mass when water changes phase.
Latent heating is an efficient way of transferring energy globally and is an important energy source for Earth's weather and climate.
$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS }}$

(c) Saturation (from Understanding Weather \& Climate)

Evaporation: the process whereby molecules break free of the liquid volume.

Condensation: water vapor molecules randomly collide with the water surface and bond with adjacent molecules.

How Much Heat Is Brought Upward By Water Vapor?

\square Earth's surface lost heat to the atmosphere when water is evaporated from oceans to the atmosphere.

The evaporation of the 1 m of water causes Earth's surface to lost 83 watts per square meter, almost half of the sunlight that reaches the surface.
\square Without the evaporation process, the global surface temperature would be $67^{\circ} \mathrm{C}$ instead of the actual $15^{\circ} \mathrm{C}$.

Specific .vs. Relative Humidity

- Specific Humidity: How many grams of water vapor in one kilogram of air (in unit of gm $/ \mathrm{kg}$).
\square Relative Humidity: The percentage of current moisture content to the saturated moisture amount (in unit of \%).
Clouds form when the relative humidity reaches 100%

Observed Specific Humidity

FIGURE 1.8 Profiles of specific humidity as a function of pressure, for annual-mean conditions as (a) Line plots and (b) Contour plot. Data from ERA-Interim.
(from Global Physical Climatology)

- The rapid upward and poleward decline in water vapor abundance in the atmosphere is associated with the strong temperature dependence of the saturation vapor pressure.

Clausius-Clapeyron Relationship

How to Saturate the Air?

(from "IS The Temperature Rising")
\square Two ways:
(1) Increase (inject more) water vapor to the air $(\mathrm{A} \rightarrow \mathrm{B})$.
(2) Reduce the temperature of the air $(\mathrm{A} \rightarrow \mathrm{C})$.

$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS200 }}$

Clausius-Clapeyron relationship tells us:

If the relative humidity (the ratio of the actual specific humidity to the saturation specific humidity) remains fixed, then the actual water vapor in the atmosphere will increase by 7% for every 1 K temperature increase.

Four Types of Fog

- Radiation Fog: radiation cooling \rightarrow condensation \rightarrow fog
- Advection fog: warm air advected over a cold surface \rightarrow fog
- Upslope fog: air rises over a mountain barrier \rightarrow air expands and cools \rightarrow fog
- Evaporation fog: form over lake when colder air moves over warmer water \rightarrow steam fog

Basic Conservation Laws

The First Law of Thermodynamics

- Conservation of Momentum
- Conservation of Mass
- Conservation of Energy
- This law states that (1) heat is a form of energy that (2) its conversion into other forms of energy is such that total energy is conserved.
- The change in the internal energy of a system is equal to the heat added to the system minus the work down by the system:

Heat and Temperature

- Heat and temperature are both related to the internal kinetic energy of air molecules, and therefore can be related to each other in the following way:

Specific heat = the amount of heat per unit mass required to raise the temperature by one degree Celsius

(from Atmospheric Sciences: An Intro. Survey

- Therefore, when heat is added to a gas, there will be some combination of an expansion of the gas (i.e. the work) and an increase in its temperature (i.e. the increase in internal energy):

Specific Heat

TABLE 2.1 The Specific Heat of a Substance is the Amount of Heat Required to Increase the Temperature of One Gram of the Substance $1^{\circ} \mathrm{C}$

Specific Heat		
Substance	$\left(\right.$ cal/g/ $\left.{ }^{\circ} \mathrm{C}\right)$	$\left(\mathrm{J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}\right)$
Water	1.0	4186
Ice	0.50	2093
Air	0.24	1005
Sand	0.19	795

Entropy Form of Energy Eq.

$c_{v} \frac{D T}{D t}+p \frac{D \alpha}{D t}=J$

$\boldsymbol{P} \boldsymbol{\alpha}=\boldsymbol{R} \boldsymbol{T}$
$\boldsymbol{C}=\mathbf{p} \mathbf{v}+\boldsymbol{R}$

$c_{p} \frac{D T}{D t}-\alpha \frac{D p}{D t}=J$

- The rate of change of entropy (s) per unit mass following the motion for a thermodynamically reversible process.
- A reversible process is one in which a system changes its thermodynamic state and then returns to the original state without changing its surroundings

Potential Temperature ($\boldsymbol{\theta}$)

- For an ideal gas undergoing an adiabatic process (i.e., a reversible process in which no heat is exchanged with the surroundings; $J=0$), the first law of thermodynamics can be written in differential form as:

$$
\begin{gathered}
c_{p} D \ln T-R D \ln p=D\left(c_{p} \ln T-R \ln p\right)=0 \\
\rightarrow \\
\theta=T\left(p_{s} / p\right)^{R / c_{p}} \quad \rightarrow c_{p} \frac{D \ln \theta}{D_{t}}=\frac{J}{T}=\frac{D s}{D_{t}}
\end{gathered}
$$

- Thus, every air parcel has a unique value of potential temperature, and this value is conserved for dry adiabatic motion.
- Because synoptic scale motions are approximately adiabatic outside regions of active precipitation, θ is a quasi-conserved quantity for such motions.
- Thus, for reversible processes, fractional potential temperature changes are indeed proportional to entropy changes.
- A parcel that conserves entropy following the motion must move along an isentropic (constant θ) surface.

Potential Temperature ($\boldsymbol{\theta}$)

The potential temperature of an air parcel is defined as the the temperature the parcel would have if it were moved adiabatically from its existing pressure and temperature to a standard pressure P_{0} (generally taken as 1000 mb).
$\theta=T\left(\frac{P_{0}}{P}\right)^{\frac{R}{C_{p}}}$
$\theta=$ potential temperature
$\mathrm{T}=$ original temperature
$\mathrm{P}=$ original pressure
$\mathrm{P}_{0}=$ standard pressure $=1000 \mathrm{mb}$
$\mathrm{R}=$ gas constant $=\mathrm{R}_{\mathrm{d}}=287 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$
$\mathrm{C}_{\mathrm{p}}=$ specific heat $=1004 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$
$\mathrm{R} / \mathrm{C}_{\mathrm{p}}=0.286$

Importance of Potential Temperature

\square In the atmosphere, air parcel often moves around adiabatically. Therefore, its potential temperature remains constant throughout the whole process.
\square Potential temperature is a conservative quantity for adiabatic process in the atmosphere.
\square Potential temperature is an extremely useful parameter in atmospheric thermodynamics.

Adiabatic Process

\square If a material changes its state (pressure, volume, or temperature) without any heat being added to it or withdrawn from it, the change is said to be adiabatic.
\square The adiabatic process often occurs when air rises or descends and is an important process in the atmosphere.

Diabatic Process

Involve the direct addition or removal of heat energy.
DExample: Air passing over a cool surface loses energy through conduction.

Static Stability

If potential temperature is a function of height, the atmospheric lapse rate, $\Gamma \equiv$ $-\partial T / \partial z$, will differ from the adiabatic lapse rate and

$$
\frac{T}{\theta} \frac{\partial \theta}{\partial z}=\Gamma_{d}-\Gamma
$$

If $\Gamma<\Gamma d$ so that θ increases with height, an air parcel that undergoes an adiabatic displacement from its equilibrium level will be positively buoyant when displaced downward and negatively buoyant when displaced upward so that it will tend to return to its equilibrium level and the atmosphere is said to be statically stable or stably stratified.

$$
\begin{array}{ll}
d \theta_{0} / d z>0 & \text { statically stable } \\
d \theta_{0} / d z=0 & \text { statically neutral } \\
d \theta_{0} / d z<0 & \text { statically unstable }
\end{array}
$$

Roles of the Word Ocean

- The world ocean is a key element of the physical climate system.
- Ocean covers about 71% of Earth's surface to an average depth of 3730 m .
- The ocean has tremendous capability to store and release heat and chemicals on time scales of seasons to centuries.
- Ocean currents move heat poleward to cool the tropics and warm the extratropics.
- The world ocean is the reservoir of water that supplies atmospheric water vapor for rain and snowfall over land.
- The ocean plays a key role in determining the composition of the atmosphere through the exchange of gases and particles across the air-sea interface.

Vertical Structure of Ocean

(from Climate System Modeling)
ESS200

Ocean Temperature

FIGURE 1.11 Annual-mean ocean potential temperature profiles for various latitudes and as a function of depth in meters for (a) February and (b) August. MIMOC data.

Temperature in the ocean generally decreases with depth from a temperature very near that of the surface air temperature to a value near the freezing point of water in the deep ocean

Ocean Salinity

(from Global Physical Climatology)

Salinity of seawater is defined as the number of grams of dissolved salts in a kilogram of seawater.

- Salinity in the open ocean ranges from about $33 \mathrm{~g} / \mathrm{kg}$ to $38 \mathrm{~g} / \mathrm{kg}$.
- Salinity is an important contributor to variations in the density of seawater at all latitudes and is the most important factor in high latitudes and in the deep ocean, where the temperature is close to the freezing point of water

Salinity of the global ocean varies systematically with latitude in the upper layers of the ocean.
In the deep ocean, salinity variations are much smaller than near the surface, because the sources and sinks of freshwater are at the surface and the deep water comes from a few areas in high latitudes.

Climate Roles of Land Surface

greenhouse gas emissions
\rightarrow affects global energy and biogeochemical cycles
\square creation of aerosols
\rightarrow affects global energy and water cycles

