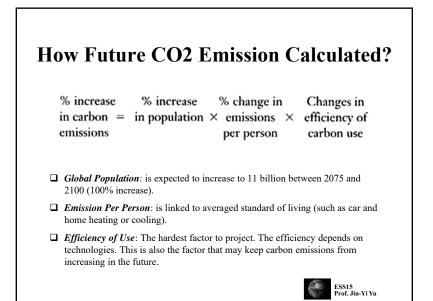
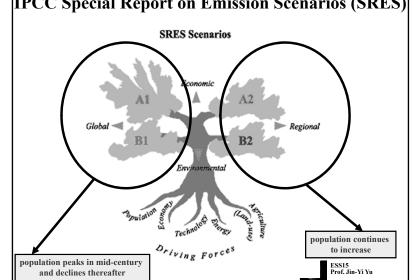


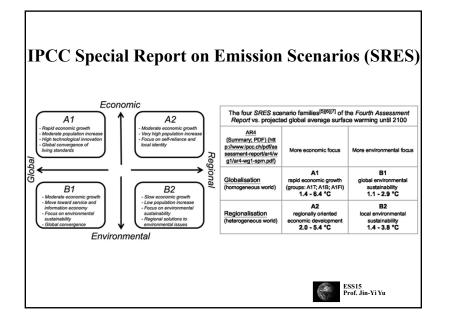
Foreword	vii
Preface	ix
Summary for Policymakers	1
Technical Summary	21
1 The Climate System: an Overview	85
2 Observed Climate Variability and Change	99
3 The Carbon Cycle and Atmospheric Carbon Dioxide	183
4 Atmospheric Chemistry and Greenhouse Gases	239
5 Aerosols, their Direct and Indirect Effects	289
6 Radiative Forcing of Climate Change	349
7 Physical Climate Processes and Feedbacks	417
8 Model Evaluation	471
9 Projections of Future Climate Change	525
10 Regional Climate Information - Evaluation and Projections	583
11 Changes in Sea Level	639
12 Detection of Climate Change and Attribution of Causes	695
13 Climate Scenario Development	739
14 Advancing Our Understanding	769
Appendix I Glossary	787
Appendix II SRES Tables	799
Appendix III Contributors to the IPCC WGI Third Assessment Report	827
Appendix IV Reviewers of the IPCC WGI Third Assessment Report	845
Appendix V Acronyms and Abbreviations	861
Appendix VI Units	869
Appendix VII Some Chemical Symbols used in this Report	871 ESS15

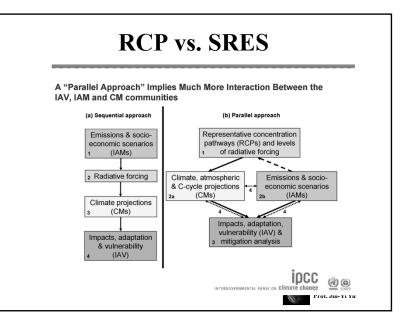
Major Conclusions in SPM (TAR)

- 1. An increasing body of observations gives a collective picture of a warming world and other changes in the climate system.
- 2. Emissions of greenhouse gases and aerosols due to human activities continue to alter the atmosphere in ways that are expected to affect the climate.
- 3. Confidence in the ability of models to project future climate has increased.
- 4. There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities.
- 5. Human influences will continue to change atmospheric composition throughout the 21st century.
- 6. Global average temperature and sea level are projected to rise under all IPCC SRES scenarios.
- 7. Anthropogenic climate change will persist for many centuries.
- 8. Further action is required to address remaining gaps in information and understanding.

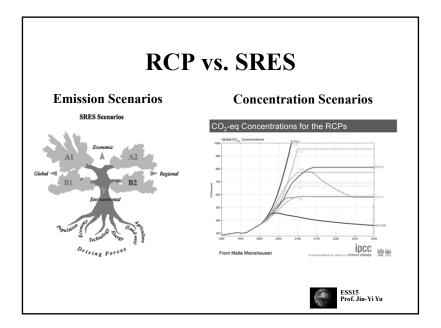

IPCC's Probability Phrases


Table 1 | IPCC guidelines for translation of probability phrases.


Phrase	Likelihood
Virtually certain	>99%
Very likely	>90%
Likely	>66%
About as likely as not	33%-66%
Unlikely	<33%
Very unlikely	<10%
Exceptionally unlikely	<1%

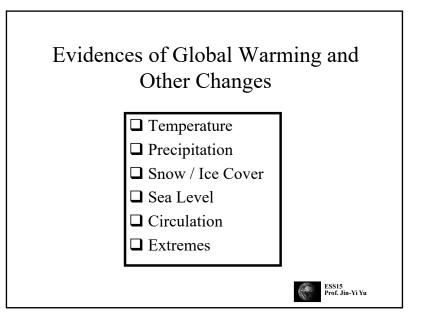

Note: In some IPCC reports authors have used the phrases 'More likely than not' for probabilities > 50%, 'Extremely likely' for probabilities above 95% and 'Extremely unlikely' for probabilities below 5%.

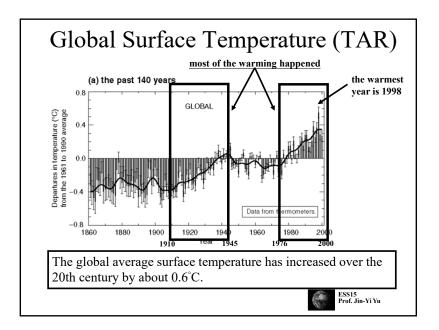
IPCC Special Report on Emission Scenarios (SRES)

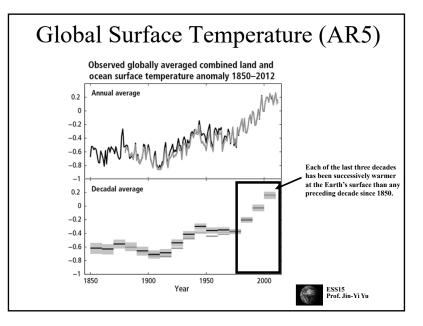

Representative Concentration Pathway (RCP)

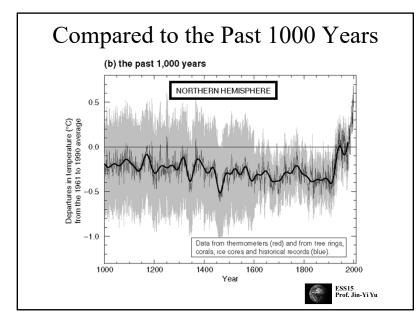
Name	Radiative forcing	CO2 equix (p.p.m.)	Temp anomaly (°C)	Pathway	SRES temp anomaly equiv
RCP8.5	8.5 Wm² in 2100	1370	4.9	Rising	SRES A1F1
RCP6.0	6 Wm² post 2100	850	3.0	Stabilization without overshoot	SRES B2
RCP4.5	4.5 Wm² post 2100	650	2.4	Stabilization without overshoot	SRES B1
RCP2.6 (RCP3PD)	3Wm ² before 2100, declining to 2.6 Wm ² by 2100	490	1.5	Peak and decline	None

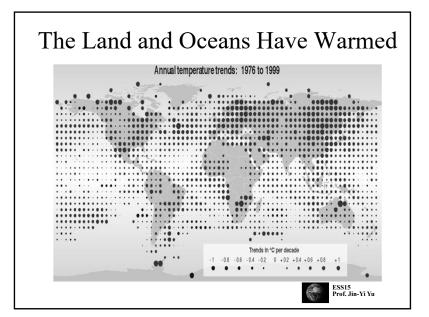
Table 4: from Moss et.al. 2010. Median temperature anomaly over pre-industrial levels and SRES comparisons based on nearest temperature anomaly, from Rogelj et.al. 2012

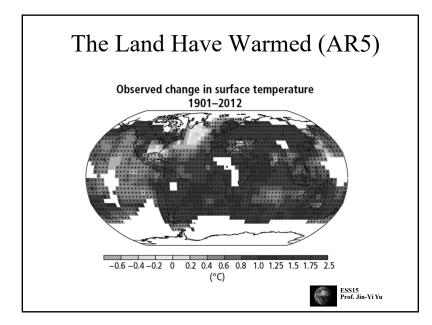

- □ RCPs are four greenhouse gas concentration (not emissions) trajectories adopted by the IPCC for its AR5 in 2014.
- □ It supersedes Special Report on Emissions Scenarios (SRES) projections published in 2000.
- RCP 4.5 is a scenario that stabilizes radiative forcing at 4.5 Watts per meter squared in the year 2100 without ever exceeding that value.

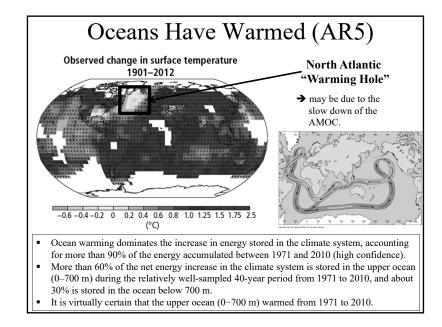

ESS15 Prof. Jin-Yi Yu

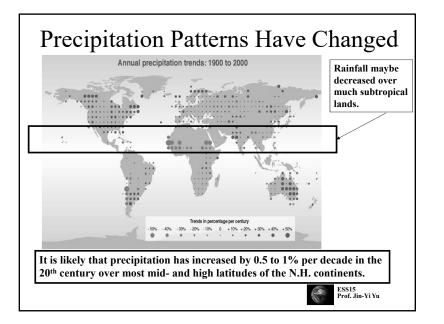


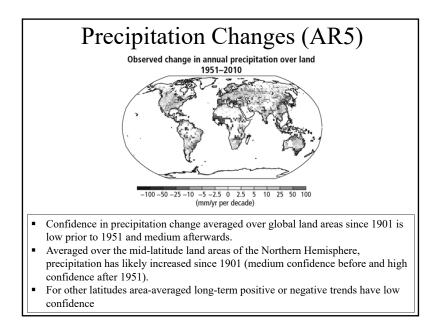

Major Conclusions in SPM (TAR)

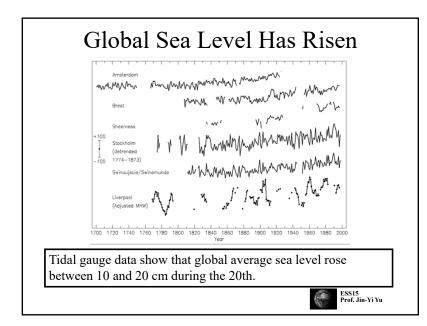

- 1. An increasing body of observations gives a collective picture of a warming world and other changes in the climate system.
- 2. Emissions of greenhouse gases and aerosols due to human activities continue to alter the atmosphere in ways that are expected to affect the climate.
- 3. Confidence in the ability of models to project future climate has increased.
- 4. There is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities.
- 5. Human influences will continue to change atmospheric composition throughout the 21st century.
- 6. Global average temperature and sea level are projected to rise under all IPCC SRES scenarios.
- 7. Anthropogenic climate change will persist for many centuries.
- 8. Further action is required to address remaining gaps in information and understanding.

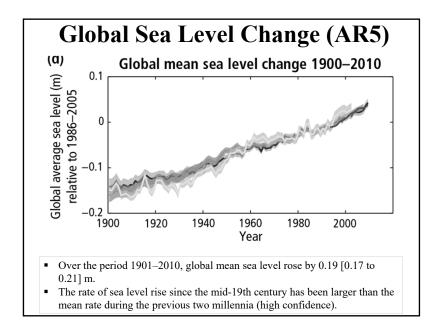


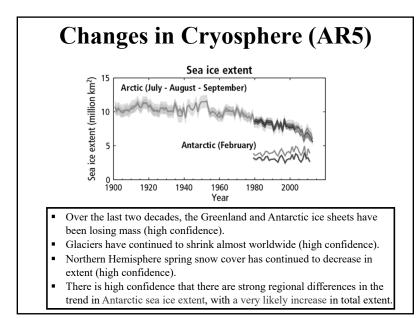


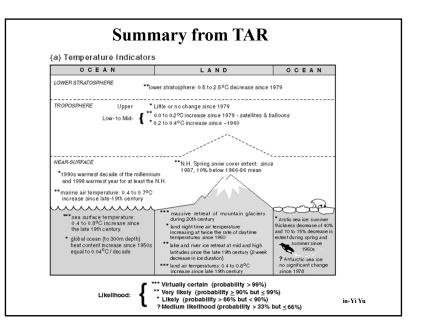


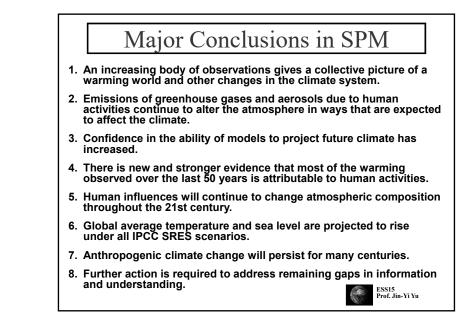


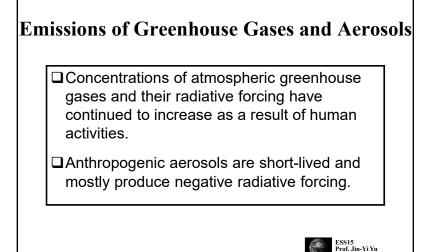


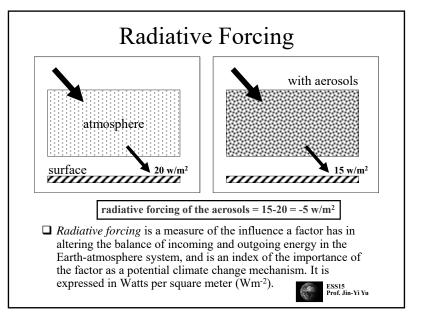


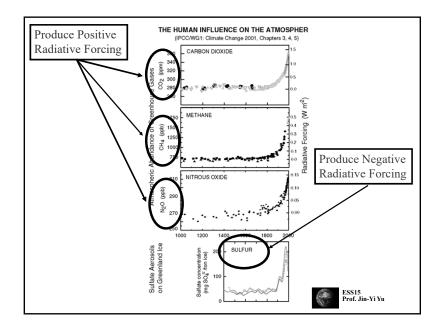


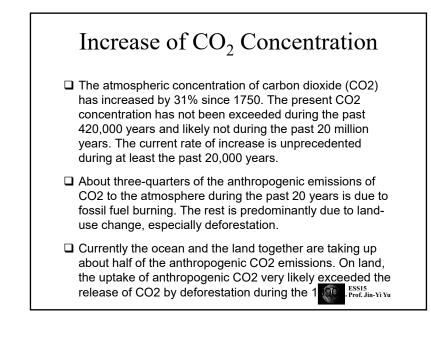


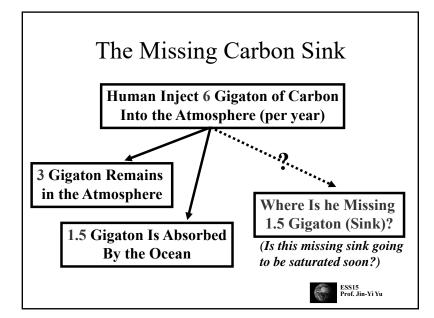


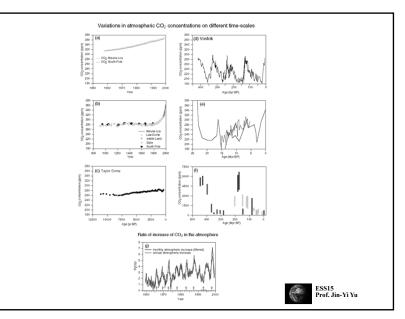


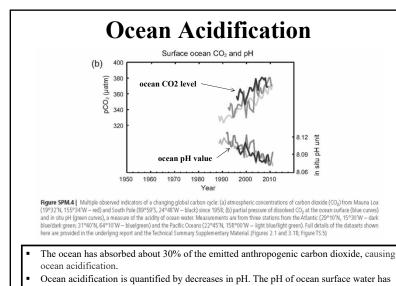


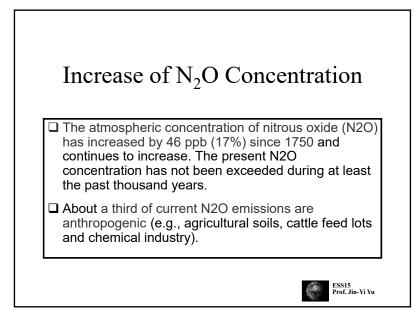



Phenomenon and	Assessment that changes occurred (typically	Assessment of a human		Likelihood of further changes			
direction of trend	since 1950 unless otherwise indicated)	contribution to observ		Early 21st cent		Late 21st century	
Warmer and/or fewer cold days and nights over most land areas	Very Redy (2.6) Very Redy Very Redy	Very likely Likely Likely	[10.6]	Likely	(11.3)	Vitually cetain Vitually cetain Vitually cetain	(12.4
Warmer and/or more	Very likely [2.6]	Very fikely	[10.6]	Likely	(11.3)	Virtually certain	[12.4
frequent hot days and nights over most land areas	Very Rody Very Rody	Likely Likely (nights only)				Virtually certain Virtually certain	
Warm spells/heat waves. Frequency and/or duration	Medium confidence on a global scale Likely in large parts of Europe, Asia and Australia [2.6]	Likely*	[10.6]	Not formally assessed*	(11.3)	Vay Ikely	(12.)
increases over most land areas	Medium confidence in many (but not all) regions. Librly	Not formally assessed More IRely than not				Yay Ikely Yay Ikely	
Heavy precipitation events. Increase in the frequency,	Likely more land areas with increases than decreasest [2.6]	Medium confidence	(7.6, 10.6)	Likely over many land an	eas [11.3]	Very fikely over most of the mid-latitude land masses and over wet tropical regions	(12)
intensity, and/or amount of heavy precipitation	Likely more land areas with increases than decreases Likely over most land areas	Medium confidence More likely that not				Likely over many areas Very likely over mort land areas	
Increases in intensity	Low confidence on a global scale Likely changes in some regions ⁴ [2.6]	Low confidence	[10.6]	Low confidences	[11,3]	Likely (medium confidence) on a regional to global scale ⁴	(12.4
and/or duration of drought	Medium confidence in some regions Likely in many regions, since 1970*	Medium confidence ⁴ More likely than not				Medium confidence in some regions Like§*	
Increases in intense	Low confidence in long term (centernial) changes Virtually certain in North Atlantic since 1970 [2.6]	Low confidence	[10.6]	Low confidence	[11.3]	More likely than not in the Western North Pacific and North Atlantic	
tropical cyclone activity	Low confidence Likely in some regions, since 1970	Low confidence More likely than not				More likely than not in some basins Likely	
Increased incidence and/or	Likely (since 1970) (3.7)	Likely*	(3.7)	Likely ¹	[13.7]	Very likely	(13.)
magnitude of extreme high sea level	Likely (late 20th century) Likely	Likely ⁴ More likely than not ⁴			Very likely* Likely		
Attribution is based on available cases stat Model project near-term increases in the honor contrivent, configures in tends is North America. The Requiring and Intensity of dought ha AFA assessed the area affected by dought SEX assessed machine confidence that as in dhought at the level of ingels region. There is able confidence in projected draw Regional to global-case projected draw Regional to global-case projected draw Regional to global-case projected draw	sthropogenic influence had contributed to some changes in the drought patter	Constrement of some observed heat we been Tillely increases in either the n central Nurth America and north- ns observed in the second half of th Islance) in presently dry regions by the Talsco driving in these regions by the	e frequency or intensity west.Australia. e 20th century, based i we end of this century in end of this century on	of heavy precipitation with ser on its attributed impact on pred- under the ILCPR.5 scenario. Solit der the ILCPR.5 scenario.	pitation and t	mperature changes SEEX assessed low confidence in the attribut	ion of that







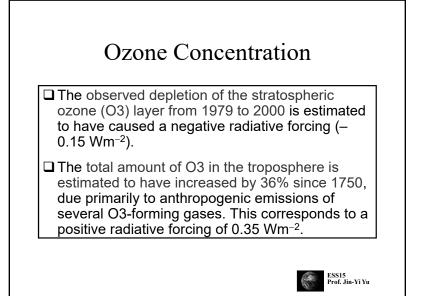


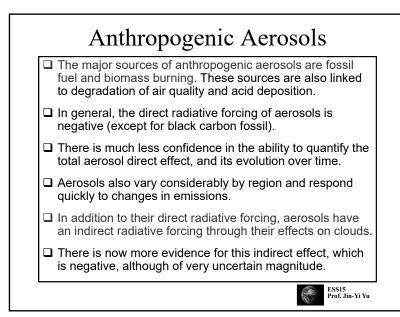
decreased by 0.1 since the beginning of the industrial era (high confidence).

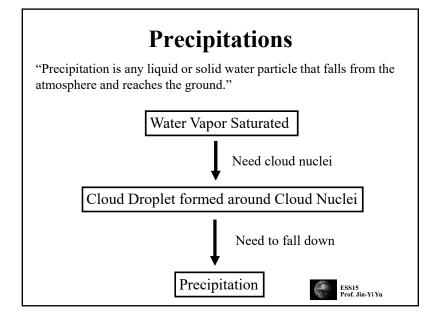
Increase of Methane Concentration The atmospheric concentration of methane (CH4) has increased by 151% (1060 ppb9) since 1750 and continues to increase.

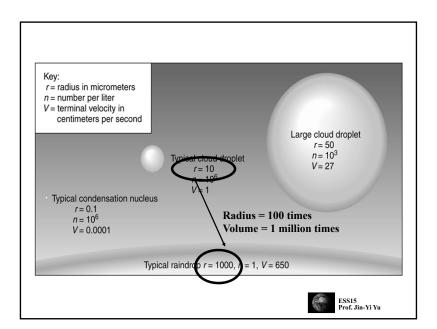
- □ The present CH4 concentration has not been exceeded during the past 420,000 years.
- □ Slightly more than half of current CH4 emissions are anthropogenic (e.g., use of fossil fuels, cattle, rice agriculture and landfills).

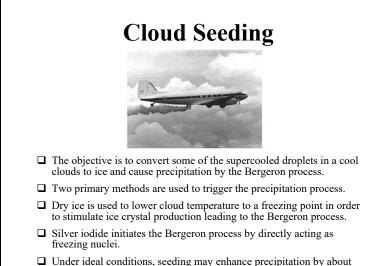
ESS15 Prof. Jin-Yi Yu

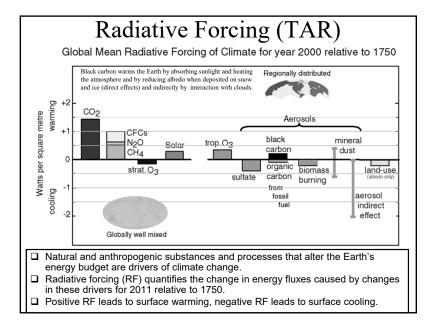

greenhouse gases (e.g., CFCI3 and CF2CI2), are either increasing more slowly or decreasing, both in response to reduced emissions under the regulations of the Montreal Protocol and its Amendments.

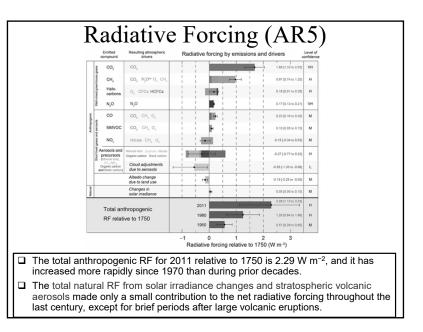

Their substitute compounds (e.g., CHF2CI and CF3CH2F) and some other synthetic compounds (e.g., perfluorocarbons (PFCs) and sulphur hexafluoride (SF6)) are also greenhouse gases, and their concentrations are currently increasing.

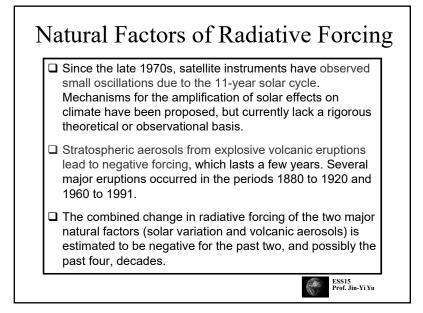

Halocarbon Concentration

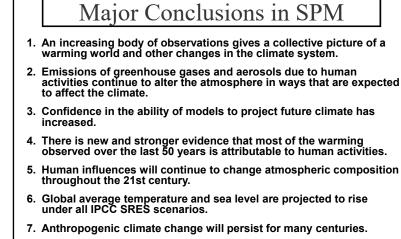

□ Since 1995, the atmospheric concentrations of many of


those halocarbon gases that are both ozone-depleting and

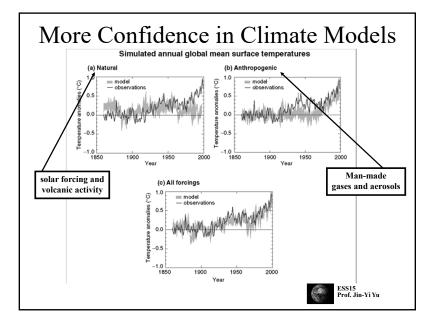


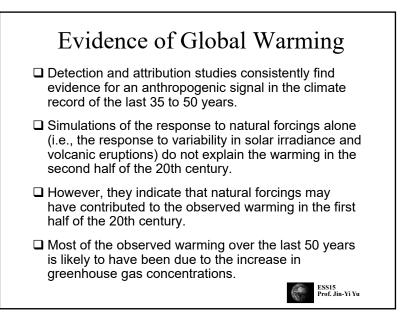

Under ideal conditions, seeding may enhance precipitation by about 10%.

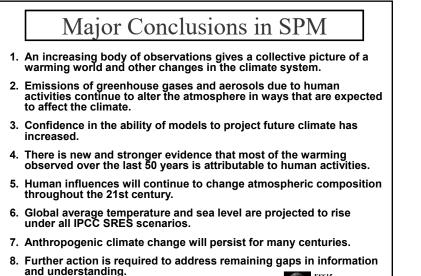

ESS15 Prof. Jin-Yi Yu

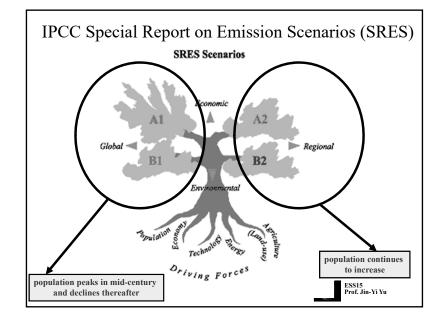

Indirect Effects of Anthropogenic Aerosols

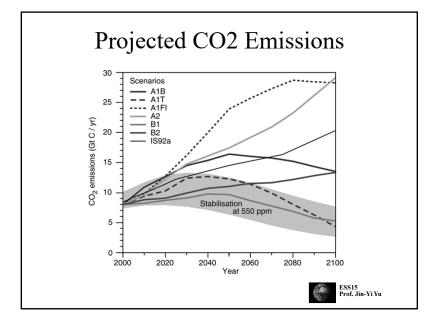
Cloud albedo All For the same cloud water or ice content more but smaller cloud Negative Medium Low effect Cloud if the clouds Smaller cloud particles reflect more solar radiation Negative Medium Very low Semi-direct All Smaller cloud particles reflect more solar radiation Negative Medium Very low Semi-direct All Smaller cloud particles decrease the precipitation efficiency Negative Medium Very low effect All Absorption of solar radiation by absorbing aerosols affects static Positive or negative Small Very low Glaciation phase An increase in IN increases the precipitation efficiency Positive Medium Very low Thermodynamic Mixed- Smaller cloud droplets delay freezing causing super-cooled Positive or negative Medium Very low effect clouds Smaller cloud droplets delay freezing causing super-cooled Positive or negative Medium Very low effect phase Smaller cloud droplets delay freezing causing super-cooled Positive or negative Medium Very low effect Diateston to colder temperatures Positive or n	Effect	Cloud Types Affected	Process	Sign of Change in TOA Radiation	Potential Magnitude	Scientific Understanding
effect clouds thereby presumably prolonging cloud lifetime registric lifetime registric lifetime Semi-direct All clouds Absorption of solar radiation by absorbing aerosols affects static evaporation of cloud particles Positive or negative Positive or negative Small Very low evaporation of cloud particles Glaciation indirect effect Mixed- phase clouds Aincreases in IN increases the precipitation efficiency phase Positive or negative Medium Very low Thermodynamic effect Mixed- phase clouds Smaller cloud droplets delay freezing causing super-cooled phase Positive or negative Medium Very low				Negative	Medium	Low
effect clouds stability and the surface energy budget, and may lead to an evaporation of cloud particles negative Glaciation indirect effect Mixed- phase clouds An increases in IN increases the precipitation efficiency clouds Positive Medium Very low Thermodynamic effect Mixed- phase clouds to extend to colder temperatures Smaller cloud droplets delay freezing causing super-cooled phase Positive or negative Medium Very low				Negative	Medium	Very low
Indirect effect phase clouds Thermodynamic Mixed- Smaller cloud droplets delay freezing causing super-cooled Positive or Medium Very low effect phase clouds to extend to colder temperatures negative			stability and the surface energy budget, and may lead to an		Small	Very low
effect phase clouds to extend to colder temperatures negative clouds		phase	An increase in IN increases the precipitation efficiency	Positive	Medium	Very low
□ The indirect effect of anthropogenic aerosols is probably		phase			Medium	Very low
negative, although of very uncertain magnitude.	T n	he inc	direct effect of anthropogenic aer ve, although of very uncertain ma	osols is agnitude	probab	ly

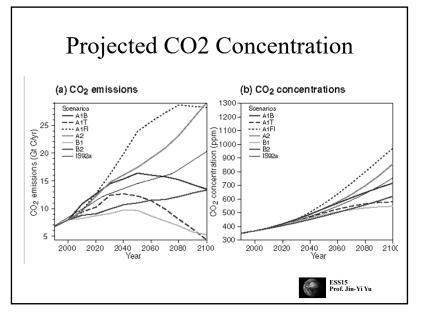


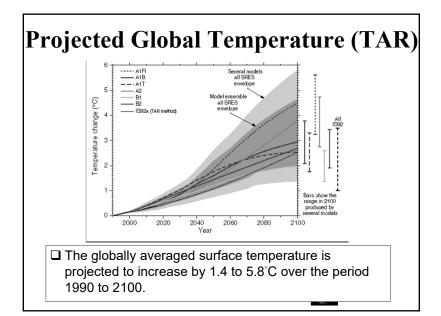


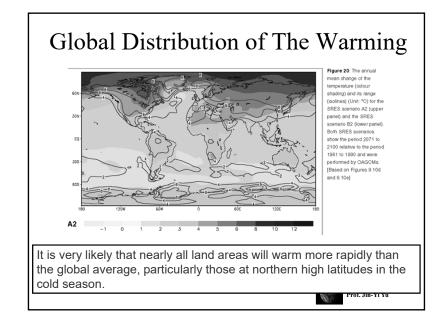


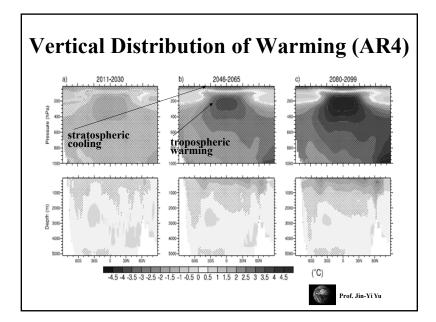

8. Further action is required to address remaining gaps in information and understanding.

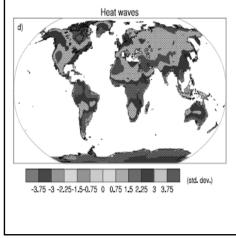


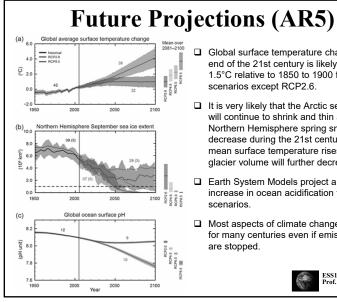






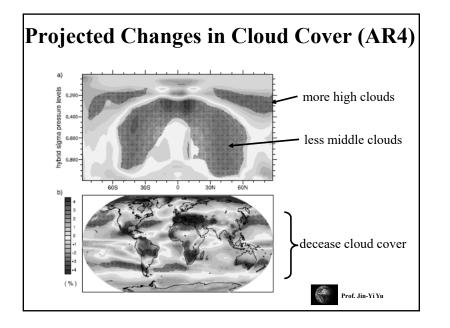





Projected Temperature Extreme (AR4)

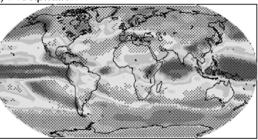
 It is very likely that heat waves will be more intense, more frequent and longer lasting in a future warmer climate. Cold episodes are projected to decrease significantly.

 Almost everywhere, daily minimum temperatures are projected to increase faster than daily maximum temperatures, leading to a decrease in diurnal temperature range.


- Global surface temperature change for the end of the 21st century is likely to exceed 1.5°C relative to 1850 to 1900 for all RCP
- □ It is very likely that the Arctic sea ice cover will continue to shrink and thin and that Northern Hemisphere spring snow cover will decrease during the 21st century as global mean surface temperature rises. Global glacier volume will further decrease.
- Earth System Models project a global increase in ocean acidification for all RCP
- Most aspects of climate change will persist for many centuries even if emissions of CO2

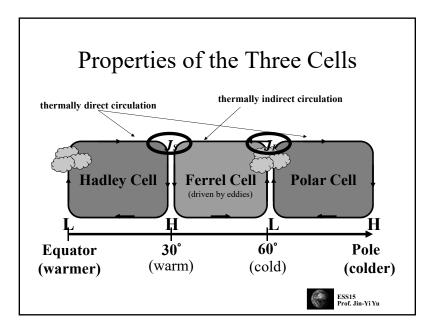
ESS15 Prof. Jin-Yi Yu

Projected Precipitation (TAR)


- Based on global model simulations and for a wide range of scenarios, global average water vapor concentration and precipitation are projected to increase during the 21st century.
- By the second half of the 21st century, it is likely that precipitation will have increased over northern mid- to high latitudes and Antarctica in winter.
- □ At low latitudes there are both regional increases and decreases over land areas.
- Larger year to year variations in precipitation are very likely over most areas where an increase in mean precipitation is projected.

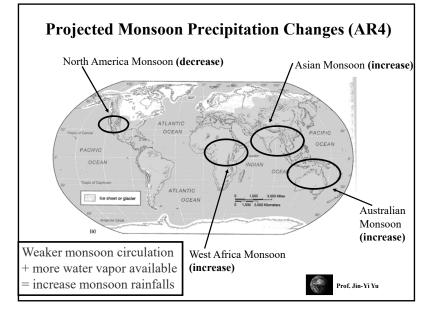
Projected Precipitation Changes (AR4)

a) Precipitation



(mm day⁻¹) -0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5

 Precipitation generally increases in the areas of regional tropical precipitation maxima (such as the monsoon regimes) and over the tropical Pacific.


 Precipitation generally decreases in the subtropics and increases at high latitudes -> due to the poleward shift of the storm track \rightarrow due to the expansion of the Hadley circulation.

Projected Precipitation Extreme (AR4) Precipitation Intensity Intensity of precipitation events is projected to increase, particularly in tropical and high latitude areas that experience increases in mean precipitation. The number of dry days -1.25 -1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1 Dry days increases between precipitation events in the subtropics and lower mid-latitudes There is a tendency for drying of the mid-continental areas during summer, indicating a greater risk of droughts in those regions. Prof. Jin-Yi Yu -1.25 -1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1 1.25

Projected Monsoon Variability (TAR) It is likely that warming associated with increasing greenhouse gas concentrations will cause an increase of Asian summer monsoon precipitation variability. Changes in monsoon mean duration and strength depend on the details of emission scenario.

Projected Hurricane Activities (AR4)

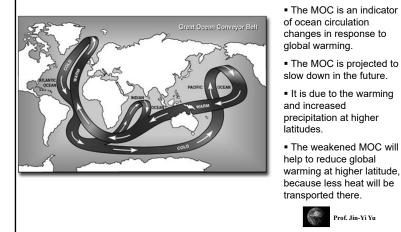
 Most recent published modelling studies projected a decrease in the overall number of storms.

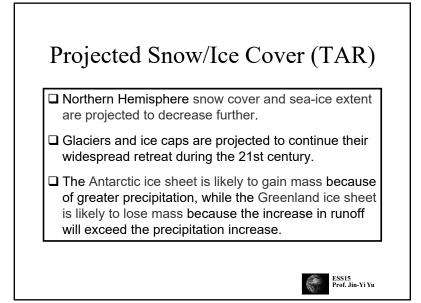
 Although less confidence, studies projected decrease of relatively weak storms in most basins, with an increase in the numbers of the most intense tropical cyclones.

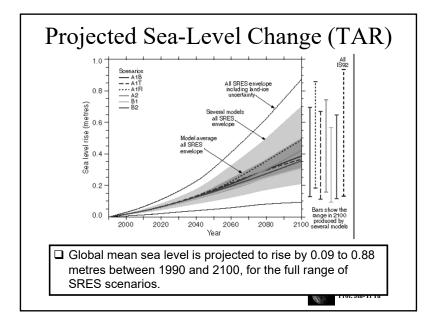
Prof. Jin-Yi Yu

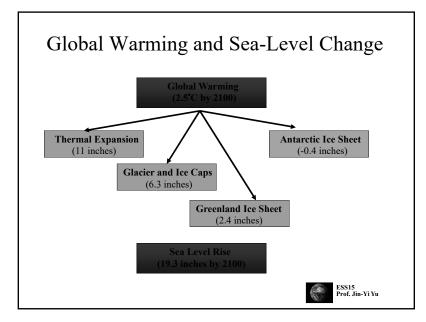
Projected Extratropical Storms (AR4)

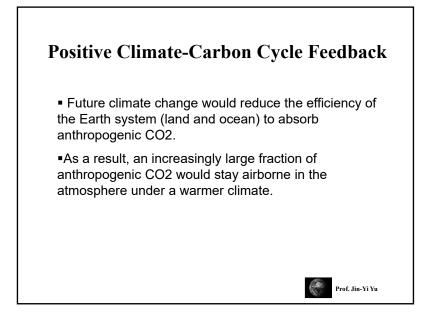
For a future warmer climate, a poleward shift of storm tracks in both hemispheres that is particularly evident in the SH, with greater storm activity at higher latitudes.


A future tendency for more intense extratropical storms, although the number of storms could be less.




Prof. Jin-Yi Yu


Projected Thermohaline Circulation (TAR) □ Most models show weakening of the ocean thermohaline circulation which leads to a reduction of the heat transport into high latitudes of the Northern Hemisphere. The current projections using climate models do not exhibit a complete shut-down of the thermohaline circulation by 2100. Beyond 2100, the thermohaline circulation could completely, and possibly irreversibly, shut-down in either hemisphere if the change in radiative forcing is large enough and applied long enough. scenarios. ESS15 Prof. Jin-Yi Yu


Projected Change in Atlantic Meridional Overturning Circulation (MOC) / AR4

Global mean sea level is projected to rise in the future warming world. The rise is contributed the most by this factor:

- a. Antarctic ice sheet melting
- b. Greenland ice sheet melting
- c. Glacier and ice cap melting
- d. thermal expansion

ESS15 Prof. Jin-Yi Yu

.....