Chapter 24: Tropical Cyclones

- Hurricane Naming, Track, Structure
- Tropical Cyclone Development

Tropical Cyclones vs. Mid-latitude Storms

Tropical cyclones

\square The tropical cyclone is a low-pressure system which derives its energy primarily from evaporation from the sea in the presence of high winds and lowered surface pressure.

It has associated condensation in convective clouds concentrated near its center.

Mid-latitude storms

Mid-latitude storms are low pressure systems associated cold fronts, warm fronts, and occluded fronts.
\square They primarily get their energy from the horizontal temperature gradients that exist in the atmosphere.

An Overview of Tropical Cyclone

Primary Circulation - Axis-symmetric circulation - Conserving angular momentum

- Balanced flow

Driven by the Secondary Circulation

Secondary Circulation: A Carnot Cycle

 (Carnot Heat Engine) Keryy Emanel 1988

- A heat engine acts by transferring energy from a warm region to a cool region of space and, in the process, converting some of that energy to mechanical work.

The Carnot cycle is a theoretical thermodynamic cycle and can be shown to be the most efficient cycle for converting a given amount of thermal energy into work, or conversely, creating a temperature difference (e.g. refrigeration) by doing a given amount of work.

Two Circulation Components of Tropical Cyclone

Secondary Circulation

\rightarrow Centrifugal and Coriolis Forces are not in perfect equilibrium with the pressure gradient.
\rightarrow Air is forced to center and then rises
\rightarrow Conservation of Angular Momentum
\rightarrow As air enters to a small radius, its speed has to become faster
\rightarrow Increases the rotational speed of the tropical cyclone.
\rightarrow Primary Circulation

WISHE (Wind Induced Surface Heat Exchange) Mechanism

Hurricane Formation

- Tropical Disturbance: Clusters of small thunderstorms.
- Tropical Depression: When at least one closed isobar is present, the disturbance is classified as a tropical depression.
- Tropical Storm: Further intensification, to wind speeds of $60 \mathrm{~km} / \mathrm{hr}(37 \mathrm{mph})$, place the storm in the category of tropical storm.
- Hurricane: Hurricane status is gained when winds reach or exceed $120 \mathrm{~km} / \mathrm{hr}(74 \mathrm{mph})$.

Stages of a Tropical Cyclone Lifecycle

Sources of Incipient Disturbances

ITCZ breakdownEasterly wavesSubtropical stormsMonsoon troughEquatorial waves (Rossby, mixed Rossby-gravity)Mesoscale convective complexes

Tropical Disturbances and Easterly Waves

- Some tropical disturbances form in association with mid-latitude troughs migrating toward lower latitudes, some form from ITCZ-related convection, but most develop from easterly waves.
- Easterly waves, or undulations in the trade wind pattern, spawn hurricanes in the Atlantic (typically 2-3000 km).
- Only about 10% tropical disturbances intensify into more organized, rotating storms.
$\because)^{2}$

Genesis from Equatorial Waves

 structure suggestive of equatorial Rossby waves.
Equatorial Rossby waves may initiate genesis, others argue that the shorter wavelength mixed Rossby-gravity waves are also important.

Development of Hurricane

Hurricane Structure

- A central eye surrounded by large cumulonimbus thunderstorms occupying the adjacent eye wall.
- Weak uplift and low precipitation regions separate individual cloud bands.

Hurricane Characteristics

DDefinition: Hurricanes have sustained winds of 120 $\mathrm{km} / \mathrm{hr}(74 \mathrm{mph})$ or greater.

Size: Average diameters are approximately 600 km (350 mi). (one third the size of mid-latitude cyclone)
\square Duration: days to a week or more.
\square Strength: Central pressure averages about 950 mb but may be as low as 870 mb .
\square Power: The energy released by a single hurricane can exceed the annual electricity consumption of the US and Canada.

Typical Hurricane Eye (Hurricane Katrina, 2005)

Radar Image of Hurricane Andrew

Pressure Structure

- The horizontal pressure gradient with altitude decreases slowly.
- At about 400 mb , pressures withi the storm are approximate to that outside.
- Surface-400mb: Cyclonic circulation.
- 400 mb -tropopause: anticyclonic circulation.
The upper portions of the storm are blanketed by a cirrus cloud cap due to overall low temperatures.

Hurricane Eye and Eye Wall

- The eye is an area of descending air, relatively clear sky, and light winds which is about 25 km (15 mi) in diameter on average.
- A shrinking eye indicates storm intensification.
- The eye wall is comprised of the strongest winds, the largest clouds, and the heaviest precipitation with rainfall rates as high as $2500 \mathrm{~mm} /$ day (100 in .).
The eye moves at a speed of 20 $\mathrm{km} / \mathrm{hr} \rightarrow$ The calm weather
associated with the eye will last less than an hour.

$\frac{1}{23124}$

Hurricane track

Naming Convention

\square Hurricanes: extreme tropical storms over Atlantic and eastern Pacific Oceans.

Typhoons: extreme tropical storms over western Pacific Ocean.
Cyclones: extreme tropical storms over Indian Ocean and Australia.

Annual Hurricane Frequency

Basin	Maximum	Minimum	Average
Atlantic	12	2	5.4
Eastern Pacific	14	4	8.9
Western Pacific	24	11	16.0
Northern Indian Ocean	6	0	2.5
Southwestern Indian Ocean	10	0	4.4
Southeastern Indian Ocean/Australia	7	0	3.4
Australia/Southwestern Pacific	11	2	4.3
Global	65	34	44.9

Source: Colorado State University
\square No hurricane in the Southern Atlantic Ocean.
\square Western Pacific hurricanes are the strongest.
等

Conditions Necessary for Hurricane Formation

Hurricanes form only over deep (several tens of meters) water layers with surface temperatures in excess of $27^{\circ} \mathrm{C}$.

- Poleward of about 25°, water temperatures are usually below this threshold.
- Hurricanes are most frequent in late summer and early autumn during high SST times.
Coriolis force is an important contributor, and as such, hurricanes do not form equatorward of 5°.
Need an unstable atmosphere: available in the western tropical ocean bur not in the eastern parts of the ocean.
\square Strong vertical shear must be absent for hurricane formation.

Naming of Hurricanes

When a tropical disturbance reaches the stage of tropical storm, it will be given a name.
The name come from an A-W list created by World Meteorological Organization (WMO).
Six lists are created for the Atlantic Ocean, each list is used for one hurricane season.

- The names of the hurricanes that cause devastating damages are removed from the list forever

Hurricane Seasons

- Hurricanes obtain their energy from latent heat release in the cloud formation process.
- Hurricanes occur where a deep layer of warm waters exists and during the times of highest SSTs.
- For the N.H., August and September are the most active months.
- For the S.H., the hurricane season is JanuaryMarch.

Hurricane Intensity Scale

Category	$\begin{gathered} \text { Pressure } \\ \mathrm{mb} \end{gathered}$	$\underset{\mathrm{km} / \mathrm{hr}}{\text { Wind Speed }} \underset{\mathrm{mph}}{\text { mph }}$		$\underset{\mathrm{m}}{\text { Storm Surge }}$		Damage
1	≥ 980	119-154	74-95	1-2	4-5	Minimal
2	965-979	155-178	96-110	2-3	6-8	Moderate
3	945-964	179-210	111-130	3-4	9-12	Extensive
4	920-944	211-250	131-155	4-6	13-18	Extreme
5	<920	> 250	> 155	>6	>18	Catastrophic

- The Saffir-Simpson scale.
- Five categories: larger numbers indicate lower central pressure, greater winds, and stronger storm surges.

Hurricane Damages

- Heavy rainfalls
- Strong winds
- Tornadoes
- Storm Surges: A rise in water level induced by the hurricane.

Hurricane Induced Tornadoes

- Most hurricanes also contain clusters of tornadoes.
- Most of these tornadoes occur in the right front quarter of the hurricane movement.
- It appears the slowing of the wind by friction at landfall contribute to the formation of tornadoes.

Hurricane Wind Structure

Winds and surge are typically most intense in the right front quadrant of the storm where wind speeds combine with the speed of the storm's movement to create the area of highest potential impact.

Storm Surges

- Process 1: Hurricane winds drag surface waters forward and pileup the waters near coasts.
- Process 2: Lower atmospheric pressure raises sea level (for every 1 mb pressure decrease, sea level raises 1 cm).
- Storm surges raise costal sea level by a meter or two for most hurricanes, but can be as much as 7 meters.

Hurricane Watches and Warnings

- Hurricane watch: if an approaching hurricane is predicted to reach land in more than 24 hours.
- Hurricane Warning: if the time frame is less, a warning is given.

