Measuring the Effect of Selective Logging on Tropical Forest-Atmosphere Exchange

Scott Miller, Mike Goulden, Humberto da Rocha, Mary Menton, Michela Figueira, Albert de Sousa, Helber Freitas, Chris Doughty, Ed Read, Rob Elliot

UC IRVINE AND UNIVERSIDADE DE SAO PAULO
0. Introduction

1. Selective-Logging Effect on CO2 exchange (preliminary)
 - 15,000 km2/yr in Brazilian Amazon (Nepstad et al., 1999)

2. Annual Carbon Budget (year prior to logging)
 - Are these forests storing carbon?
 - Is eddy flux reliable for calculating sums in these forests?
LBA-Ecology Sites

Santarem, Para

LBA = Large Scale Biosphere-Atmosphere Experiment in Amazonia
Logged Site

60 km

16 km

Experimental Plan

Tapajos River

Control Site

Wind dir

INDEX MAP
Sankaree, PA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

60 km

16 km
Select site

Infrastructure Installed

Ground-Based Measures begin

Tower measure begins

Additional equipment, second tower, automated soil chambers installed after cut

Tower and ground-based measurements continue after cut to quantify effects of logging on CO₂ and Energy exchange

Tower Measurements

METEOROLOGY

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR (up/down)</td>
<td>LiCor Quantum</td>
</tr>
<tr>
<td>Solar</td>
<td>Kipp & Zonen</td>
</tr>
<tr>
<td>Net Radiation</td>
<td>REBS Q*7</td>
</tr>
<tr>
<td>Rain</td>
<td>Tipping Bucket</td>
</tr>
</tbody>
</table>

PROFILES

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind (6 hrs)</td>
<td>Cup, 2D Sonics</td>
</tr>
<tr>
<td>Temperature (6 hrs)</td>
<td>Campbell 107</td>
</tr>
<tr>
<td>CO₂/H₂O (12 hrs)</td>
<td>LI-7000 (Closed Path)</td>
</tr>
</tbody>
</table>

FLUXES

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum/Heat</td>
<td>Campbell CSAT3</td>
</tr>
<tr>
<td>1) CO₂/H₂O</td>
<td>LI-7500 (Open Path)</td>
</tr>
<tr>
<td>2) CO₂/H₂O</td>
<td>LI-7000 (Closed Path)</td>
</tr>
</tbody>
</table>
Sonic anemometer looks **East**, the most common wind direction.
Elevator to raise and lower eddy flux sensors.
Carbon Budget

Ideally, the forest atmosphere coupling is 1-dimensional, such that the Net Ecosystem Exchange (NEE) of CO2 is given by:

\[\text{NEE} = F_c + S \]

\[S = \frac{dC}{dt} \]

\(F_c \) - turbulent CO2 flux

\(S \) - rate of change of CO2 in the air-column.
Eddy Covariance

Directly measures exchange (flux) of CO$_2$ between forest and atmosphere. Averaging interval is of order 1 hour.

$$F_c = \langle w \rho_c \rangle$$

F_c = co2 flux
w = vertical wind component
ρ_c = co2 density
CO₂ Storage

The rate of change of CO₂ beneath the eddy flux sensors is measured via the mean profile of CO₂. Averaging interval is of order 1 hour.

\[
S_z = \frac{d}{dt} \rho_c \int_0^z d_-
\]

- \(S_z\) = rate of storage beneath \(z\)
- \(\rho_c\) = CO₂ density
1. SELECTIVE LOGGING (R. Pereira et al., 2002, in press)

- Few percent of marketable trees are cut

1. Conventional Selective Logging:

- Large percent of canopy/soil can be damaged

2. Reduced Impact Selective Logging:

- Pre-cut inventory and vine cutting
- Planned roads, log decks, skid trails
- Planned felling and low impact extraction methods
RESPONSE TO LOGGING

Requires measurement **PRECISION**.

Eddy covariance is a high precision measurement.
Hypothesis: Short-Term Response to Logging

Net Ecosystem Exchange
Hypothesis: Short-Term Response to Logging

Net Ecosystem Exchange

1. Immediate reduction in photosynthesis & respiration.
Hypothesis: Short-Term Response to Logging

Net Ecosystem Exchange

1. Immediate reduction in photosynthesis & respiration.

2. Lagged increase in decomposition.
Pre- and Post Logging

Preliminary data **do not support** this hypothesis.
POSSIBLE SCENARIOS

• The fluxes shown are raw without known important corrections.

• The cut is not complete - may be sampling a mix of logged/intact forest.

• Dense understory takes advantage of newly available PAR.

• Reduced Impact Logging and/or Light Harvest resulted in little disturbance.

• These are dry season data - chambers indicate decomposition is water limited.
POSSIBLE SCENARIOS

• The fluxes shown are raw without known important corrections.

• The cut is not complete - may be sampling a mix of logged/intact forest.

• Dense understory takes advantage of newly available PAR.

• Reduced Impact Logging and/or Light Harvest resulted in little disturbance.

• These are dry season data - chambers indicate decomposition is water limited.
POSSIBLE SCENARIOS

• The fluxes shown are raw without known important corrections.

• The cut is not complete - may be sampling a mix of logged/intact forest.

• Dense understory takes advantage of newly available PAR.

• Reduced Impact Logging and/or Light Harvest resulted in little disturbance.

• These are dry season data - chambers indicate decomposition is water limited.
POSSIBLE SCENARIOS

• The fluxes shown are raw without known important corrections.

• The cut is not complete - may be sampling a mix of logged/intact forest.

• Dense understory takes advantage of newly available PAR.

• Reduced Impact Logging and/or Light Harvest resulted in little disturbance.

• These are dry season data - chambers indicate decomposition is water limited.
PRELIMINARY GAP MAP

10-15% gaps

600 m
POSSIBLE SCENARIOS

• The fluxes shown are raw without known important corrections.

• The cut is not complete - may be sampling a mix of logged/intact forest.

• Dense understory takes advantage of newly available PAR.

• Reduced Impact Logging and/or Light Harvest resulted in little disturbance.

• These are dry season data - chambers indicate decomposition is water limited.
Soil respiration (presumably decomposition) strongly affected by rain (presumably litter moisture)

Heavy rains interrupt 2001 dry season

Autochamber measurements of soil respiration
2. SITE CARBON BUDGET

Requires **ACCURATE** measurement of **NEE** for all meteorological conditions.

But, eddy covariance **accuracy** is **uncertain** during calm, stable nights.
Large **measured** carbon uptake of almost 4 TC/ha/yr!

Above Ground Biomass about **100 TC/ha**

Closed Path IRGA w/high frequency loss corrections
Is this apparent carbon sink real?

• Ground Based Inventories

• Micrometeorological Biases
 • Below Canopy Dynamics
 • Gap Dynamics (2nd tower)

• Methodological Biases
 • Is a u* correction warranted?
 • Open vs. closed path IRGA
Ground Based Inventories

- Trees > 55 cm DBH inventoried 1984 and again in 2000.
- Difference between inventories indicates forest growth.
- Also have dendrometers for short term wood increment.

1984 Tree biomass: 105 tC ha\(^{-1}\)
2000 Tree biomass: 106 tC ha\(^{-1}\)
Net wood increment: 0 \(\pm\) 1 tC ha\(^{-1}\)
Probable Delta soil C: 0 \(\pm\) 0.5 tC ha\(^{-1}\)
Annual C balance: 0 \(\pm\) 1.5 tC ha\(^{-1}\)
Is this apparent carbon sink real?

- Ground Based Inventories

- Micrometeorological Biases
 - Below Canopy Dynamics
 - Gap Dynamics (2nd tower)

- Methodological Biases
 - Is a u* correction warranted?
 - Open vs. closed path IRGA
Sub Canopy Micrometeorology

Above canopy wind easterly, night and day

Night-time low level (1.3 m) wind not aligned with above canopy wind.
Is this apparent carbon sink real?

• Ground Based Inventories

• Micrometeorological Biases
 • Below Canopy Dynamics
 • Gap Dynamics (2nd tower)

• Methodological Biases
 • Is a u* correction warranted?
 • Open vs. closed path IRGA
u* Correction

Assumption: NEE and $u*$ are independent

Difficulty: Most nights are very calm.
u* Correction

A dramatic effect!

CUMULATIVE CARBON EXCHANGE (NEE)

- **u* = 0.1 m/s correction**
- **No u* correction**

DAY SINCE JAN 1, 2000
Is this apparent carbon sink real?

• Ground Based Inventories

• Micrometeorological Biases
 • Below Canopy Dynamics
 • Gap Dynamics (2nd tower)

• Methodological Biases
 • Is a u^* correction warranted?
 • Open vs. closed path IRGA
Open/Closed Path IRGA

Comparisons “Look Good”

CO2 FLUX

H2O FLUX
Open/Closed Path IRGA

But, they give different answers!

Which is right?

CUMULATIVE CARBON EXCHANGE (NEE)

Closed Path

Open Path
Conclusion: Annual Sums over Tropical Forests are Very Sensitive to Measurement and Processing techniques

Closed Path: $u^* = 0.1 \text{ m/s}$

Closed Path: $u^* = 0.2 \text{ m/s}$

Closed Path: no u^* corr

Open Path: no u^*

Open Path: no u^*, 240 min
Conclusions

• High quality data set - original plus targeted additional measurements.

• Logging Effect on CO2 exchange is not obvious.

• Annual CO2 Budget is sensitive – eddy flux alone is not enough.

Additional Thanks: Marcy Litvak, Fernando Alves Leão, Roberto Cardoso, Antonio Oviedo, Dan Hodkinson, Lisa Zweede and Bethany Reed, IBAMA, NASA and INPE.