Urban ecosystems and the North American carbon cycle

*Department of Earth System Science and Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, USA, †Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331, USA, ‡Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON Canada M5B 2K3, §New Zealand Centre for Ecological Economics, Private Bag 11 052, Palmerston North, New Zealand, ¶Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, ON Canada M5S 1A4, ||Pacific Southwest Research Station, USDA Forest Service, c/o Department of Plant Sciences, University of California, One Shields Ave., Davis, CA 95616, USA, **Northeastern Research Station, USDA Forest Service, c/o Baltimore Ecosystem Studies, 5200 Westland Blvd, Baltimore, MD 21227, USA, §§Depto. de Politica y Cultura, UAM-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud 04960, Mexico

Abstract

Approximately 75–80% of the population of North America currently lives in urban areas as defined by national census bureaus, and urbanization is continuing to increase. Future trajectories of fossil fuel emissions are associated with a high degree of uncertainty; however, if the activities of urban residents and the rate of urban land conversion can be captured in urban systems models, plausible emissions scenarios from major cities may be generated. Integrated land use and transportation models that simulate energy use and traffic-related emissions are already in place in many North American cities. To these can be added a growing dataset of carbon gains and losses in vegetation and soils following urbanization, and a number of methods of validating urban carbon balance modeling, including top down atmospheric monitoring and urban ‘metabolic’ studies of whole ecosystem mass and energy flow. Here, we review the state of our understanding of urban areas as whole ecosystems with regard to carbon balance, including both drivers of fossil fuel emissions and carbon cycling in urban plants and soils. Interdisciplinary, whole-ecosystem studies of the socioeconomic and biophysical factors that influence urban carbon cycles in a range of cities may greatly contribute to improving scenarios of future carbon balance at both continental and global scales.

Keywords: CO2 emissions, global carbon cycle, urban ecology

Received 18 September 2005; revised version revised 10 April 2006 and accepted 13 March 2006

Introduction

The carbon balance of North America has become the subject of a US interagency research initiative aimed at quantifying sources and sinks of carbon and the mechanisms underlying continental-scale carbon balance (Wofsy & Harris, 2002). In North America, as at the global scale, urbanization is a major component of environmental change and alterations to the carbon cycle. There has been increasing interest in the study of urban systems as ecosystems in the sense that both biophysical and socioeconomic components, as well as their interactions, can be studied at various scales to understand the system as a whole (Alberti & Waddel, 2000; Grimm et al., 2000; Pickett et al., 2001). Integrated urban ecological studies can contribute greatly to understanding the carbon cycle, as they incorporate underlying drivers of fossil fuel emissions, as well as biological sources and sinks of carbon.

North America as a whole is a large contributor to global-scale fossil fuel emissions and much of this contribution is attributable to urban areas. Approximately 75–80% of the population of the continent is urban as defined by the census bureaus of the United States, Canada and Mexico; this proportion is projected to continue to increase (Fig. 1). CO2 emissions from fossil fuel combustion for electricity generation, non-electrical residential energy, and the transportation...
sector are highly dependent on the magnitude and distribution of urban areas, which vary greatly between the United States, Canada, and Mexico, as well as at regional scales. Urban areas also affect the carbon balance of terrestrial ecosystems directly through land conversion (e.g. Alig et al., 2002; Alig & Butler, 2004), and indirectly through effects of the urban ‘footprint’ on ecosystem processes.

Here, we review recent research on the linkages between urbanization and the current and future carbon cycle. We suggest that the trajectory of the North American carbon cycle will be highly influenced by the patterns and forms of urban development, and that research linking urban planning, engineering, decision-making, and natural ecosystem processes in and surrounding urban areas will greatly improve projections of continental scale carbon budgets in the 21st century.

Fossil fuel emissions from urban areas

The direct effect of fossil fuel emissions is arguably the most significant effect of urbanization on the carbon cycle. In the 1990s, fossil fuel combustion resulted in emission of 6.3×10^8Mt yr$^{-1}$ of carbon globally, of which 3.2×10^8Mt yr$^{-1}$ was retained in the atmosphere (IPCC, 2001). North America contributed 1.6×10^8Mt yr$^{-1}$ of these emissions, of which more than 85% was contributed by the United States (Marland et al., 2005). Approximately 40% of total fossil fuel emissions in the United States, Canada, and Mexico originate from the transportation and residential sectors (World Resources Institute, 2005); of this, the vast majority is contributed by urban residents, given that they constitute most of the population of all three nations (Fig. 1).

Many aspects of urban form, structure, and growth may influence the magnitude of fossil fuel emissions and their rate of change. Of these, population and housing densities are key variables in addition to the rate of total population growth, affluence and technologies in use (Kates et al., 2003; Romero Lankao et al., 2004). North America is characterized by increases in the number of households that exceed the rate of population growth; according to United Nations estimates, between 1985 and 2000 the number of households in the United States increased by 25% while the population increased by only 15%. In Canada, households increased by 39% for a population increase of 19%, and in Mexico the increases for households and the total population were 60% and 33%, respectively (United Nations, 2002; United Nations Habitat, 2003).

Reductions in household size result in increases in the number of dwellings and vehicles per capita (MacKellar et al., 1995; CEC, 2001), as well as increases in the consumption of land (Alig et al., 2003; Liu et al., 2003). MacKellar et al. (1995) estimated that if households rather than total population is analyzed in relation to global energy use, more than 40% of the increase in energy consumption of developed countries from 1970 to 1990 can be attributed to reductions in household size, due both to changes in age structure (i.e. aging populations), as well as other behavioral and societal changes. Hence, CO$_2$ emissions projections are very sensitive to demographic assumptions and units of scale (e.g. whether individuals or households are treated explicitly).

Building characteristics are also a key determinant of fossil fuel emissions from the residential sector. For example, the average size of newly constructed, single family residences has been increasing rapidly in the United States, from 140 m2 in 1970 to more than 210 m2 in 2004 (NAHB, 2005). At the same time, energy use per household has evolved with technological change; overall, there was a decrease in energy ‘intensity’ in the last three decades as measured by residential energy use per m2. Per household, residential energy use declined between 1978 and 1987, and has remained constant due to opposing effects of decreased energy use for heating and cooling and increased appliance use (US Department of Energy, 2004). Multiple factors influencing CO$_2$ emissions from the residential sector can be modeled with residential energy end-use models that take into account characteristics of the housing stock (Aydinalp et al., 2003). One such model, the Canadian Residential End-use Energy Consumption and Emission Model (CREEEM), has been used to evaluate the potential for national CO$_2$ emissions reductions from energy efficiency measures in Canada, which is characterized by high emissions from residen-

Fig. 1 Actual and projected percentage of the population of the United States, Canada and Mexico that live in urban areas, estimated by the United Nations (2004b).
tial heating due to its northerly location. Simulations with CREEEM indicated that upgrades to housing insulation and mechanical and appliance efficiency, individually, could result in emissions reductions of up to 9% of emissions from the existing Canadian housing stock. Multiple upgrades may additionally increase emissions reductions, although the effects are not additive (i.e. some multiple upgrades have canceling effects). In addition, some of the major upgrades that constituted this reduction may be prohibitively expensive for many consumers (Guler, 2000). Hence, trends in household size and number, residence size, and construction of new housing in the coming decades may have a larger potential for impacts on residential CO₂ emissions than retrofits to existing housing.

Spatial patterns of housing and development also play a key role. ‘Urban sprawl’ has been linked qualitatively to increasing fossil fuel emissions per capita in North America (CEC, 2001; Gonzalez, 2005). The term urban sprawl has been variously defined, but generally refers to one or more combinations of reductions in developmental density, segregation of residential and commercial districts, and expansion of the transportation network (Ewing et al., 2003). Notably, the term ‘urban’ itself imparts some uncertainty to the study of land conversion as definitions of urban land vary; Theobald (2005) pointed out that the widely used US census definition excludes conversion to lower density, more rural development (‘exurban’), which is also rapidly increasing in the United States (Stein et al., 2005). Such reductions in density and increases in the spatial extent of settlements and road networks result in increasing commuting distances, vehicle miles traveled, and related vehicular emissions (Ewing et al., 2003).

Highly quantitative linkages between urban development and fossil fuel emissions are a key next step. In many metropolitan and developing regions, powerful tools for analyzing patterns of land conversion and its impacts on energy use and traffic are already in place. A variety of land-use models that explicitly represent household choices and characteristics, geographic/environmental factors, and transportation patterns associated with urban land expansion have been developed as land use and transportation planning tools (EPA, 2000; Hunt et al., 2005). These models may use a variety of methods including statistical, econometric, dynamic, cellular automata, or hybrid approaches to represent land-use change and its linkages to decision-making and biophysical processes (Agarwal et al., 2000). Increasingly, urban land-use transportation modeling frameworks have been linked to pollutant emissions, environmental, and ecological models to evaluate impacts of land use alternatives on air quality, biodiversity, and ecological processes (Alberti & Waddel, 2000; EPA, 2000). There is great potential to utilize these frameworks to develop plausible scenarios of CO₂ emissions from electricity generation, traffic, and residential fuel combustion. For example, a systems dynamics model of urban growth in the Salt Lake City–Ogden metropolitan area in Utah, USA compared CO₂ emissions scenarios under various policy options involving technological innovation vs. dampening of urban sprawl (Fig. 2). An advantage to utilizing land-use-transportation models for emissions scenarios is their ability to incorporate multiple factors that influence decision-making about land use, residential energy use and transportation patterns, including environmental, economic, and demographic variables.

The role of vegetation and soils

Lacking in most, if not all, urban land-use models is explicit incorporation of the effects of urban land expansion on CO₂ sources and sinks in vegetation and soil. Using satellite data and the CASA model, Imhoff et al. (2004) estimated that for the United States, the net effect of urbanization on net primary productivity (NPP) was negative in the mid-1990s due to losses of productive agricultural land and constituted a reduction in C fixed by photosynthesis of 40 Mt C yr⁻¹ – equivalent to annual fossil fuel emissions of a large North American city (e.g. Fig. 2). However, once land conversion has taken place, accretion of organic carbon may occur in constructed urban, suburban, and exurban ecosystems that contain managed vegetation and

Fig. 2 Scenarios of CO₂ emissions (in Mt) for the Salt Lake–Ogden metropolitan area as estimated from a systems dynamics model of urban land conversion. The ‘dampened feedback scenario’ involves dampening of the causes of reduced development densities associated with urban sprawl. The ‘technical fix scenario’ represents improvements in fuel combustion efficiencies and increasing use of alternative fuels. Further details are given in Emmi et al. (2005).
soil. Of urban organic carbon pools, trees are probably the best studied, particularly in the United States. Estimates of carbon storage in urban trees in the coterminous United States are on the order of 700 Mt (335–980 Mt) with a gross sequestration rate of 22.8 Mt C yr$^{-1}$ (13.7–25.9 Mt C yr$^{-1}$) (Nowak & Crane, 2002). Rates of net annual sequestration vary regionally, and have been estimated to range from 0.26×10^{-9} Mt C m$^{-2}$ average forest cover in Atlanta to 0.12×10^{-9} Mt C m$^{-2}$ cover in New York, with a median value of 0.2×10^{-9} Mt C m$^{-2}$ cover (Nowak & Crane, 2002). Analogous calculations are not currently available for Canada and Mexico. In addition, uncertainties in these analyses include a lack of direct measurements of urban tree allometry and biomass, particularly belowground.

When considering total urban carbon balance, including fossil fuel emissions, urban forests can also affect carbon balance indirectly through their effects on urban energy balance and subsequently, CO$_2$ emissions related to energy use. Depending on their location relative to buildings, urban trees can reduce incident radiation through shading effects, altered wind patterns, and increased evaporative cooling (Oke, 1989; Taha, 1997; Akbari, 2002). Although some of these effects may increase energy use, for example, increased heating due to winter shading or ‘windbreak’ effects of trees near buildings that may increase air conditioning use, and increased net radiation due to lower albedo, most studies have estimated a net decrease in energy use and subsequent CO$_2$ emissions from electricity generation resulting from placing trees near buildings (Huang et al., 1987; Akbari & Taha, 1992; Akbari et al., 1997; Akbari, 2002). However, many of these calculations are based on model simulations that include untested assumptions about urban vegetation and surface processes. Some field measurements support reduced summertime temperatures near urban forest canopies (Taha et al., 1991; Spronken-Smith et al., 2000; Mueller & Day, 2005), but additional direct measurements are needed to quantify more complex effects, such as increases in both latent and sensible heat fluxes due to low forest albedo (Grimmond et al., 1996).

Estimates by Nowak et al. (2002) suggested that if fossil fuels are used to maintain urban vegetation, net effects will eventually become negative (net emitters of carbon) at varying rates depending upon species, disposal techniques and maintenance intensity, unless trees are planted in energy conserving locations to offset maintenance emissions. Using currently available estimates of forest effects on energy use, McPherson et al. (2005c) estimated the carbon balance of several municipal urban forests (street and park trees) including direct C sequestration, indirect effects of energy savings, and fossil fuel emissions from forest maintenance and management. Carbon costs and benefits varied regionally: in Cheyenne, WY and Glendale, AZ avoided CO$_2$ emissions due to energy savings slightly exceeded direct carbon sequestration from growth, while in the remaining cities, energy savings constituted 37–48% of net CO$_2$ emissions reductions (Table 1). In all cases, the presence of urban trees resulted in a net reduction in CO$_2$ emissions (Table 1). Notably, these calculations pertain to growth and indirect emissions associated with the vegetative component of urban forests only; the impact of soil C pools in urban forests is more uncertain.

In general, soil organic matter (SOM) and soil organic carbon (SOC) pools appear to increase following an initial loss of carbon from tillage and disturbance in conversion to various types of urban land. The greatest increases have been observed in the most highly managed soils – for example SOM in golf course fairways was 1.76% 1 year after turfgrass planting, 3.8% after 20 years, and 4.2% after 31 years (Qian & Follet, 2002). In the Denver–Boulder metropolitan area, the SOC pool to a depth of 30 cm was 2.1×10^{-3} Mt m$^{-2}$ in the first decade after construction – an initial decrease below native grassland pools; but within two decades of development, the urban SOC pool rose to 3.2×10^{-3} Mt m$^{-2}$ and surpassed that stored in grasslands (Golubiewski, 2006, Fig. 3). Likewise, in a comparison of

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Average annual carbon dioxide reductions (avoided and sequestered) and releases (maintenance and decomposition) in kg per tree for street and park tree populations in seven US cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft Collins</td>
<td>Cheyenne</td>
</tr>
<tr>
<td>Tree numbers</td>
<td>30,943</td>
</tr>
<tr>
<td>Avoided</td>
<td>33,05</td>
</tr>
<tr>
<td>Sequestered</td>
<td>56,67</td>
</tr>
<tr>
<td>Maintenance</td>
<td>3,43</td>
</tr>
<tr>
<td>Decomposition</td>
<td>7,23</td>
</tr>
<tr>
<td>Net reduction</td>
<td>79,07</td>
</tr>
</tbody>
</table>

Avoided emissions refer to emissions reductions from energy savings associated with tree cover. Maintenance refers to emissions associated with urban forest management activities. Data from McPherson et al. (2005a–c).
Higher within a city than among cities for a given soil study, they found that variation in SOC density was (6% and 4%, respectively) in SOC pools. In another such as Chicago and Oakland, showed slight increases contrast, cities located in warmer and/or drier climates, a fold decrease in SOC pools following urbanization. By C in native soils (Boston and Syracuse), there was a 1.6-fold decrease in SOC pools following urbanization. By C in native soils (Boston and Syracuse), there was a 1.6-fold decrease in SOC pools following urbanization. By

Carbon storage in urban and native soils in the region of six US cities, Pouyat et al. (2006) found that urban areas have the potential to either sequester or lose SOC. For those cities in the Northeast with high concentrations of C in native soils (Boston and Syracuse), there was a 1.6-fold decrease in SOC pools following urbanization. By contrast, cities located in warmer and/or drier climates, such as Chicago and Oakland, showed slight increases (6% and 4%, respectively) in SOC pools. In another study, they found that variation in SOC density was higher within a city than among cities for a given soil type (Pouyat et al., 2002). In New York City, for example, the highest SOC density (1-m depth) occurred on a golf course (28.5 × 10⁻⁹ M t m⁻²), while the lowest density occurred in an old dredge site (2.9 × 10⁻⁹ M t m⁻²), nearly a 10-fold difference. For soils derived from clean fill, however, SOC density varied by only 3 × 10⁻⁹ M t cm⁻² across several cities. Similarly, residential yards in Chicago, Moscow, and Baltimore exhibited relatively little variation in soil C density (14.4 ± 1.2 × 10⁻⁹ M t m⁻²).

These measurements have recently been used to estimate total carbon storage of urban soils in the coterminous United States: 1.9 × 10³ M t with an average SOC density of 7.7 ± 0.2 × 10⁻⁹ M t m⁻² (Pouyat et al., 2006). Notably, estimates of urban soil C storage are highly sensitive to whether total urban land area includes impervious surfaces, or whether soil C is expressed on a pervious surface basis. When considering pervious surfaces only (i.e. excluding soil carbon stored beneath paved surfaces), soil C densities may be higher than the native ecosystem they replaced. Although managed urban soils may contain more SOM and SOC than preurban, native soils, total soil greenhouse gas emissions including other trace gas fluxes and energy inputs from soil management (e.g. irrigation and fertilizer production and transport) may result in a net loss of carbon. Relative to native soils, urban soils have been shown to have higher fluxes of both CO₂ and N₂O (Koerner & Klopatke, 2002; Kaye et al., 2004, 2005) – the latter being a far more potent greenhouse gas (IPCC, 2001). Full carbon accounting of urban soil C cycling including fossil fuel emissions from management remains to be conducted, although these analyses have been conducted for agricultural ecosystems. Mosier et al. (2005) and Robertson et al. (2000) assessed total net greenhouse gas emissions in several cropping systems managed with rainfed, irrigated, till, or no-till practices in Colorado and Michigan. Their calculations included net CO₂, N₂O, and CH₄ emissions associated with fertilizer production, irrigation, tillage, plowing, and other farm operations. Most conventional till cropping systems were associated with positive net radiative forcing potential (net release of greenhouse gases to the atmosphere), while negative forcing potentials (net removal of greenhouse gases) were achieved in irrigated, no-till, continuous cropping systems. These systems have similarities to management practices in some highly managed urban soils such as irrigated turfgrass. Key determinants of net emissions in the cropland studies were rates of SOM formation and the magnitude of emissions of N₂O, which suggests that additional measurements of these variables in a variety of urban systems would provide key constraints for estimating net urban radiative forcing potential.

Results to date for urban ecosystems suggest that the net effect of urban land-use conversion will depend partly on the characteristics of the native or rural ecosystem replaced. For arid regions, the net overall effect of urbanization may be higher productivity rates, with the potential to actually increase net C storage; in more humid environments, the net effect may be a reduction in soil C storage (Pouyat et al., 2002; Golubiewski, 2003). It is clear that a great deal of additional data and cross-system comparisons on regional and global scales will be necessary to improve estimates of the net effect of urbanization on biogeochemical cycles.

The current and future carbon balance of North American settlements

Is it possible that biological C sinks in urban vegetation and soils could substantially offset CO₂ emissions from...
fossil fuel burning associated with urban activities? The answer is likely no, barring very large changes in the carbon intensity of North American urban regions. However, a number of municipalities in Canada, the United States, and Mexico have committed to voluntary programs of greenhouse gas emissions reductions, many under the Cities for Climate Protection program (CCP) of International Governments for Local Sustainability (ICLEI, formerly the International Council of Local Environmental Initiatives), which currently lists 269 towns, cities, and counties in North America committed to conducting emissions inventories, establishing a target for reductions, and monitoring the results of reductions initiatives (http://www.iceli.org). Because emissions reductions targets tend to be relatively modest, biological sinks may be important from a policy perspective for municipalities that choose to utilize tree planting and related activities to meet reductions targets. But how effective are biological sinks in offsetting CO₂ emissions in the context of total system carbon balance? How do these sinks compare with the impacts of energy efficiency measures or alternative land use and transportation designs in reducing direct emissions from fossil fuel combustion? A number of ‘accounting’ methods are available for evaluating total urban ecosystem carbon balance, though a comprehensive analysis and comparison of multiple regions remains to be conducted.

Local and regional carbon balance may be estimated from atmospheric measurements using eddy covariance (Grimmond et al., 2002, 2004; Nemitz et al., 2002; Soegaard & Møller-Jensen, 2003) or with measurements of CO₂ concentration combined with atmospheric transport modeling (Lin et al., 2004). Tracers such as carbon monoxide and the isotopic composition of CO₂ may be used to distinguish emissions from fossil fuel combustion vs. natural sources; in addition, it is possible to further distinguish different fuel types such as gasoline vs. natural gas, which have distinct carbon isotope ratios (see Box 1). Atmospheric, ‘top-down’ approaches to estimating carbon balance have been successfully applied in a number of natural ecosystems, and have been under-utilized in urbanizing environments. Atmospheric monitoring programs in cities for greenhouse gases, as well as more commonly measured pollutants may provide very useful information about patterns and processes of emissions, as these datasets may be applied at various temporal and spatial scales depending on the location and frequency of measurements and the type of transport model. However, there is a limit to the spatial disaggregation that can be applied to top-down estimates; in addition, atmospheric measurements capture only local sources and sinks of greenhouse gases. ‘Upstream’ emissions such as CO₂ emitted from remote power plants that supply energy to urban areas are not detected.

An additional, complementary approach has been termed the urban ‘metabolism’ approach, which offers a conceptual framework for understanding urban carbon flows. Named for analogies with metabolic processes of organisms in that ‘cities transform raw materials, fuel, and water into the built environment, human biomass and waste’ (Decker et al., 2000), these studies quantify the inputs and outputs of energy, water, nutrients, materials, and wastes, including components of the carbon cycle. Applied to evaluating greenhouse gas emissions, these analyses would ideally consider emissions from fuel combustion within a given city, as well as upstream power generation; emissions from industrial processes, waste, and periurban agriculture within the city region; and the impacts of organic carbon pools in vegetation and soils. However, consistent standards for analyzing carbon balances in urban metabolism have not been established. One of the greatest challenges is that no international organization collects data on city level energy use and published data on fuel use at this scale are scarce (Decker et al., 2000); in addition, datasets quantifying the direct and indirect impacts of land conversion on organic C pools have also been lacking. Given these limitations, in North America only the Greater Toronto Area (GTA) has been evaluated ‘metabolically’ for total greenhouse gas emissions, yielding estimates of 51.5–73.0 Mt CO₂ equivalent in 1990, with a 14% increase by 1999 (Sahely et al., 2003). On a per capita basis (14 Mt CO₂ cap⁻¹ yr⁻¹), this is the highest estimate yet reported in comparison with other cities internationally (Table 2), although these results

Table 2 CO₂ emissions per capita in various metropolitan areas as estimated with urban ‘metabolic’ approaches (see text for details)

<table>
<thead>
<tr>
<th>City</th>
<th>Emissions (t CO₂ cap⁻¹ yr⁻¹)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brussels</td>
<td>5.9</td>
<td>Duvigneaud & Denayeyer-De Smet (1977)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>2.3</td>
<td>Newcombe et al. (1978)</td>
</tr>
<tr>
<td>Sydney</td>
<td>7.1</td>
<td>Newman (1999)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>4.3</td>
<td>Hanya & Ambe (1976)</td>
</tr>
<tr>
<td>1990s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>4.8</td>
<td>Warren-Rhodes & Koenig (2001)</td>
</tr>
<tr>
<td>London</td>
<td>5.5</td>
<td>Chartered Institute of Wastes Management (2002)</td>
</tr>
<tr>
<td>Toronto</td>
<td>14.0</td>
<td>Sahely et al. (2003)</td>
</tr>
</tbody>
</table>

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 2092–2102
Box 1 Tracing CO2 sources from atmospheric measurements

In many urban ecosystems, CO2 sources contain unique isotopic signatures that can be used to trace their origin. Fossil fuels contain no radiocarbon by virtue of their age in contrast to respiration of modern carbon from plants and soils (Zondervan & Meijer, 1996; Meijer et al., 1997; Takahashi et al., 2001, 2002). The oxygen isotope composition of CO2 is also generally distinct for respiration vs. combustion-derived CO2, depending on the isotopic composition of local water plant available water (Florkowski et al., 1998; Pataki et al., 2003, 2005a). For anthropogenic sources, CO2 derived from natural gas combustion is more isotopically depleted in stable 13C than CO2 derived from gasoline combustion (Tans, 1981; Andres et al., 2000; Pataki et al., 2005a). As a result, natural gas combustion, gasoline combustion, and biogenic respiration have distinct combinations of isotope tracers (Fig. 4) that can be used to solve for the proportional contributions of each source to total CO2 in the atmosphere. For example, for the dual stable isotope tracers of 13C and 18O in CO2, the mass balance equations can be written as

\[C_B + C_R + C_G + C_N = C_T \]
\[\delta^{13}C_B C_B + \delta^{13}C_R C_R + \delta^{13}C_G C_G + \delta^{13}C_N C_N = \delta^{13}C_T C_T \]
\[\delta^{18}O_B C_B + \delta^{18}O_R C_R + \delta^{18}O_G C_G + \delta^{18}O_N C_N = \delta^{18}O_T C_T \]

where \(C \) is the CO2 concentration, \(\delta^{13}C \) is the carbon isotope composition of CO2, \(\delta^{18}O \) is the oxygen isotope composition of CO2, and the subscripts B, R, G, N, and T refer to the background atmosphere, the biogenic respiration source, the gasoline combustion source, the natural gas combustion source, and the total atmospheric CO2 concentration, respectively. Pataki et al. (2003) used this approach to quantify the contribution of \(C_R \), \(C_B \) and \(C_G \) to the total, non-background CO2 concentrations (\(C_T - C_B \)) in Salt Lake City, Utah, and found that biogenic respiration contributed up to 60% of local, non-background, CO2 during the growing season. In contrast, natural gas combustion contributed 30–70% of local CO2 in the wintertime depending on ambient temperatures and time of day, with colder temperatures resulting in increased natural gas consumption from residential furnaces, and evening rush-hour periods showing a greater contribution from vehicular traffic (Pataki et al., 2003, 2005b, 2006).

Fig. 4 Common ranges of the stable carbon isotope composition (\(\delta^{13}C \) relative to the V-PDB Standard), oxygen isotope composition (\(\delta^{18}O \) relative to the V-SMOW Standard) and radiocarbon composition (\(\Delta^{14}C \) relative to the oxalic acid standard) of urban CO2 sources.

cannot be directly compared with other North American cities without additional analyses.

Future pathways of urban C balance depend on the diverse processes that underlie current and future carbon emissions by coupled human-environment systems. These include economic growth, demographic dynamics, technologies, and institutional settings, as well as climate and biophysical processes. The rate of population growth has declined over the last 20 years in North America (from 1.7% in 1950–1975 to 0.9 in the last two decades in the United States and Canada, and from 3.8% in the 1970s to 1.8% in the last decade in Mexico) but in absolute terms the region is still within an era of demographic increase (United Nations, 2004a). Even as the rate of population growth continues to decline, the region’s total population will rise substantially, while if current trends continue, developmental densities and household sizes will decline. In addition, rates of growth vary between countries and regions. Categorically, regions and cities in the United States and Canada belong to a different cluster of development than Mexico: the United States and Canadian economies have become less carbon intensive; however, they still concentrate by far the highest share of international trade, production, energy-consumption, and carbon emissions (Romero Lankao, 2004). Their urban regions and cities enjoy relatively higher standards of life and are proto-

types of economic and institutional success (United Nations Habitat, 2003), although their ecological footprints continue to be much larger than in less developed regions (Fischer-Kowalski & Amann, 2001). Romero Lankao et al. (2004) analyzed greenhouse gas emissions
of Mexico City and placed the results in a national context. In contrast to the United States and Canada, Mexico still depends heavily on primary-commodities export as source of international trade. Romero Lankao et al. (2004) suggested that during the last two decades, the Mexican states promoted economic liberalization – influenced by international organizations, their ability to support domestic industries and invest in economic growth and infrastructure has been weakened. The result has been difficulty in financing social and urban infrastructural expenditure. Therefore, Mexico has a relatively smaller share of carbon emissions than its North American counterparts. Pressing issues remain including social segregation, financial constraints, and local environmental problems such as air quality (Romero Lankao et al., 2004; Wade, 2005); responses to these social and environmental issues may affect the future trajectory of national greenhouse gas emissions. In short, disparate underlying patterns of development in the United States, Canada, and Mexico must be taken into account in future projections of urban development and its impacts.

Outlook for the future

Future projections of urban growth incorporate multiple factors, such as regional changes in population and income, which influence development and its regional variability. For example, Alig & Healy (1987) provided projections of changes in the US developed area from 1982 to 2000 using a cross-section of nationwide land-use data available at the time. Although the results indicated a significant future increase in developed area, external demographic and macroeconomic projections did not anticipate the above-average growth that occurred during in the 1990s in the United States. This growth was accompanied by an accelerated rate of development – in that decade alone, US census-defined urban areas increased from 2.6% to 3.1% of the land base (Nowak et al., 2005). However, despite the inherent uncertainty always present in generating future projections, there are a growing number of tools available for mechanistically linking population projections to emissions and total carbon balance in population centers. Current projections for urban land development in North America highlight the importance of utilizing these tools and gathering additional data to improve them. For example, Alig et al. (2004) projected an increase in the coterminous US developed area over the next 25 years of 79%, raising the proportion of the total land base that is developed from 5.2% to 9.2%.

North America is an urbanized continent and the proportion of urban, suburban, and exurban land is still rapidly increasing. Comparative ecological studies of urban carbon cycles that combine analyses of energy use, fossil fuel emissions, ecological footprints, and plant and soil carbon pools have only begun. A focus on cities as a major influence on the future trajectory of atmospheric carbon cycles necessarily begins with a local and regionalized approach using new quantitative tools to analyze mass and energy flow and their underlying causes at the scale of individual metropolitan areas. In order to determine major similarities and differences among urban areas and their emergent properties at increasing temporal and spatial scales, more of these localized studies must be conducted and compared across regions, nations, and the developed and developing world. An excellent model for regional, interdisciplinary urban studies is provided by the NSF Long Term Ecological Research (LTER) research program, which includes two urban sites (Grimm et al., 2000; Pickett et al., 2001). To expand the integration of causes and consequences of urbanization into carbon cycle science, urban, suburban and exurban sites should be incorporated into other national and international research networks such as the CO2 flux networks (Baldocchi et al., 2001) and the manipulative global change experiments (Mooney et al., 1999; Canadell et al., 2000). Key questions for the next several years include:

- What is the spatial and temporal variability in fossil fuel emissions in urbanizing regions in North America?
- What is the role of direct and indirect effects of biological processes in net carbon emissions and climate in North American cities?
- What are the major factors that will determine the trajectory of anthropogenic and biogenic C sources and sinks in urbanizing regions in the 21st century?

Linked to socioeconomic and coupled human-environment studies, interdisciplinary, ecological studies of urbanizing regions will increasingly contribute to quantifying the causes and effects of urban land conversion for the continent and for the global climate system.

Acknowledgments

This synthesis was supported in part by the North American Carbon Budget and Implications for the Global Carbon Cycle, US Climate Change Science Program Synthesis and Assessment Product 2.2, State of the Carbon Cycle (SOCCCR), project with funding from the National Aeronautics and Space Administration, Department of Energy, National Oceanic and Atmospheric Administration, and The National Science Foundation.

References

Agarwal C, Green GM, Grove JM et al. (2000) *A review and assessment of land-use change models: dynamics of space, time and climate*.
Alig RJ, Plantinga A, Ahn S et al
2100
Akbari H (2002) Shade trees reduce building energy use and CO2
emissions from power plants. Environmental Pollution, 116, S119–S126.
Akbari H, Konopacki S (2005) Calculating energy-saving potentials of
Akbari H, Kurn DM, Bretz SE et al. (1997) Peak power and
Akbari H, Taha H (1992) The impact of trees and white surfaces
on residential heating and cooling energy use in four Cana-
dian cities. Energy, 17, 141–149.
Alberti M, Waddel P (2000) An integrated urban development and
climate change the US forest and agricultural sectors and
Alig RJ, Butler BJ (2004) Projecting large-scale area changes in
Alig RJ, Healy R (1987) Urban and built-up land area changes in
landscape: looking ahead in the 21st century. Landscape and
Alig RJ, Plantinga A, Ahn S et al. (2003) Land use changes involving
forestry for the United States: 1952 to 1997, with projections to
2050. General Technical Report R87, USDA Forest Service,
Pacitic Northwest Research Station.
emissions from fossil fuel consumption and cement manufac-
ture, 1751–1991, and an estimate of their isotopic composition and
Baldocchi DD, Falge E, Gu L et al. (2001) FLUXNET: a new tool to
study the temporal and spatial variability of ecosystem-scale
Foot Forward, London.
Decker EH, Elliot S, Smith FA et al. (2000) Energy and material
flow through the urban ecosystem. Annual Review of Energy and
In: L Ecosystéme Urbain Bruxellois (eds Duvigneaud P, Kestemont P), pp. 581–597. Travaux de la Section Belge du Pro-
gramme Biologique International, Bruxelles.
carbon-based metropolis. Paper presented at the Proceedings of
the 23rd International Conference of the Systems Dynamics Society, Boston.
Assessing the Effects of Community Growth and Change on Land-
Use Patterns (EPA/600/R-00/098). US Environmental Protection
Agency, Washington, DC.
transportation impacts. Transportation Research Record, 1831,
175–183.
Fischer-Kowalski M, Amann C (2001) Beyond IPAT and Kuznets
curves: globalisation as a vital factor in analysing the environ-
mental impact of socio-economic metabolism. Population and
Environment, 23, 7–47.
Florkowski T, Korus A, Miroslaw J et al. (1998) Isotopic composi-
tion of CO2 and CH4 in a heavily polluted urban atmosphere and in a
remote mountain area (Southern Poland). Paper presented at the
Isotope techniques in the study of environmental change,
Vienna.
Golubiewski NE (2003) Carbon in conurbations: afforestation and
carbon storage as consequences of urban sprawl in Colorado’s Front
Golubiewski NE (2006) Urbanization transforms prairie carbon
Gonzalez GA (2005) Urban sprawl, global warming and the limits of ecological modernisation. Environmental Politics, 14,
344–362.
Grimm NB, Groe JM, Pickett STA et al. (2000) Integrated
approaches to long-term studies of urban ecological systems. Bio-
science, 50, 571–584.
Grimmond CSB, King TS, Cropley FD et al. (2002) Local-scale
fluxes of carbon dioxide in urban environments: methodolo-
Grimmond CSB, Salmond JA, Oke TR et al. (2004) Flux and
turbulence measurements at a densely built-up site in Mar-
selle: heat, mass (water and carbon dioxide), and momentum. Journal of Geophysical Research – Atmospheres, 109, doi: 10.1029/
2004JD004936.
cover on summertime surface energy balance fluxes, San
Gabriel Valley, Los Angeles. Climate Research, 6, 45–57.
Guler B (2000) Impact of energy efficiency retrofits on residential
energy consumption and associated greenhouse gas emissions.
Dalhousie University.
In: Science for a Better Environment (ed. HESC Science Council of
Huang YJ, Akbari H, Taha H et al. (1987) The potential of
vegetation in reducing summer cooling loads in residential
buildings. Journal of Climate and Applied Meteorology, 26,
1103–1116.
Hunt JD, Kriger DS, Miller EJ (2005) Current operation urban
land-use-transport modelling frameworks: a review. Transport
Reviews, 25, 329–376.
Imhoff ML, Bounoua L, DeFries RS et al. (2004) The consequences
of urban land transformations on net primary productivity in
of Working Group I to the Third Assessment Report of the Intergov-
ernmental Panel on Climate Change Cambridge University
places: lessons learned. In: Global Change and Local Places:
Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen
cycling, and soil microbial communities in adjacent urban,
native and agricultural ecosystems. Global Change Biology,
11, 575–587.
emission sources in an arid urban environment. Environmental
Pollution, 116, 545–551.
gases at regional scales by Lagrangian observations: application
Liu J, Daily GC, Ehrlich PR et al. (2003) Effects of household
dynamics on resource consumption and biodiversity. Nature,
421, 530–533.
MacKellar FL, Lutz W, Prinz C et al. (1995) Population, house-
holds, and CO 2 emissions. Population and Development Review,
21, 849–865.
Marland G, Boden T, Andres RJ (2005) Global, regional and
national fossil fuel CO 2 emissions. In: Trends: A Compendium of
Data on Global Change. Carbon Dioxide Analysis Center, Oak
gov/trends/emis/meth_reg.htm
McPherson EG, Simpson JR, Peper PF et al. (2005a) City of
Boulder, Colorado Municipal Tree Resource Analysis. USDA Forest
Service, Pacific Southwest Research Station, Center for Urban
Forest Research.
McPherson EG, Simpson JR, Peper PF et al. (2005b) City of
Minneapolis, Minnesota Municipal Tree Resource Analysis. USDA
Forest Service, Pacific Southwest Research Station, Center for
Urban Forest Research.
McPherson EG, Simpson JR, Peper PF et al. (2005c) Municipal
forest benefits and costs in five US cities. Journal of Forestry,
103, 411–416.
Meijer H, Smid H, Perez E et al. (1997) Isotopic characterisation of
anthropogenic CO 2 emissions using isotopic and radiocarbon
analysis. Physics and Chemistry of the Earth, 21, 483–487.
Mooney HA, Canadell J, Chapin FS et al. (1999) Ecosystem
physiology responses to global change. In: The Terrestrial Bio-
sphere and Global Change: Implications for Natural and Managed
Mosier AR, Halvorson AD, Peterson GA et al. (2005) Measurement
of net global warming potential in three agroecosystems.
Nutrient Cycling in Agroecosystems, 72, 67–76.
Mueller EC, Day TA (2005) The effect of urban ground cover on
microclimate, growth and leaf gas exchange of oleander in
Phoenix, Arizona. International Journal of Biometeorology, 49,
244–255.
NAHB (2005) Housing Facts, Figures and Trends. National Asso-
ciation of Home Builders, Washington, DC.
Nemitz E, Hargreaves K, McDonald AG et al. (2002) Microme-
teorological measurements of the urban heat budget and CO 2
emissions on a city scale. Environmental Science and Technology,
36, 3139–3146.
Newcombe K, Kalina JD, Aston AR (1978) The metabolism of a
Newman PWG (1999) Sustainability and cities: extending the
Nowak DJ, Crane DE (2002) Carbon storage and sequestration by
urban trees in the USA. Environmental Pollution, 116, 381–389.
Nowak DJ, Stevens JC, Sisinni SM et al. (2002) Effects of urban
tree management and species selection on atmospheric carbon
Nowak DJ, Walton JT, Dwyer JF et al. (2005) The increasing
influence of urban environments on US forest management.
Oke TR (1989) The micrometeorology of the urban forest.
Philosophical Transaction of Royal Society of London Series B,
324, 335–349.
of carbon dioxide and its isotopic composition in an urban
atmosphere: anthropogenic and biogenic effects. Journal of
Pataki DE, Bowling DR, Ehleringer JR et al. (2006) High resolution
Pataki DE, Bush SE, Ehleringer JR (2005a) Stable isotopes as a
tool in urban ecology. In: Stable Isotopes and Biosphere–
Atmosphere Interactions: Processes and Biological Controls (eds
San Diego.
Pataki DE, Tyler BJ, Peterson RE et al. (2005b) Can carbon dioxide
be used as a tracer of urban atmospheric transport? Journal of
Pickett STA, Cadenasso ML, Grove JM et al. (2001) Urban
cological systems: linking terrestrial ecological, physical,
and socioeconomic components of metropolitan areas. Annual
Pouyat R, Groffman P, Yesilonis I et al. (2002) Soil carbon pools
and fluxes in urban ecosystems. Environmental Pollution,
116, S107–S118.
Pouyat RV, Yesilonis I, Nowak DJ (2006) Carbon storage by urban
Qian Y, Follet RF (2002) Assessing soil carbon sequestration in
turfgrass systems using long-term soil testing data. Agronomy
Journal, 94, 930–935.

