Carbon Dioxide Exchange of a Tropical Rainforest Before and After Selective Logging

UC IRVINE: SCOTT MILLER, MIKE GOULDEN, MARY MENTON, ED READ, ROB ELLIOT USP: HUMBERTO DA ROCHA, MICHELA FIGUEIRA, ALBERT DA SOUSA, AGOSTO MEIA, HELBER FREITAS HARVARD: STEVE WOFSY, SCOTT SALESKA

1978

Deforestation (confined to forest strata) in Brazilian Amazonia between 1978 (above) and 1 resolution LANDSAT satellite imagery, as reported by Skole and Tucker (Science 260, 1993) 1978 and 1988 from 78 000 km² to 230 000 km². In the same study, the total area of a ha increased from 208 000 km² in 1978 to 588 000 km² in 1988. Another estimate using a slig forest shows a total deforestation of 430 000 km², up to 1991. (Instituto Nacional de Pesqu

Brazilian Amazon: 6 million km²

Area Affected by Deforestation: 10% (1988)

Selective Logging: 10,000-15,000 km²yr⁻¹

1988

Nepstad et al. 1999 Skole and Tucker 1997 Large inputs of slash/CWD

Canopy removal can of order 30% (vines).

Logging roads/skid trails impact soil

Gaps alter microclimate

Big Questions:

How does selective logging effect carbon exchange?

Do canopy gaps created by logging effect carbon exchange?

Experimental Plan

Logged Site

Control Site

Wind

dir

60 km

16 km

Pre-logging Baseline

FOREST PHYSIOLOGY

Goulden et al. Physiological controls on tropical forest CO_2 exchange. Ecological Applications (2002) (2003) (2004?).

WATER/ENERGY BUDGET

da Rocha et al. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecological Applications (2002) (2003) (2004?).

CARBON BUDGET

Miller et al. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecological Applications (2002) (2003) (2004?).

http://www.ess.uci.edu/~lba/safe

Username: cd04
Password: secure

Logging Plan

2001

2001 Logging Area

Tower Measurements

METEOROLOGY

PAR (up/down)
Radiation (short and long wave, up and down)
Rain

PROFILES

Wind (6 levels cups and 2D Sonics) Temperature (6 levels) CO₂/H₂O (12 levels)

FLUXES (64 meters)

Momentum/Heat CO₂/H₂O

sonic anemometer Infrared Gas Anayzer

Reduced Impact Logging

- Forest inventories used to select trees
- Vines cut several months before logging
- Felling directions, skid trails, patios planned

2-3 trees cut per hectare 5 T C ha⁻¹

~15 T C ha⁻¹ slash left behind by logging

8% affected by roads and trails

Measured Effects of Logging

15% Overstory canopy lost during logging

15 T C ha⁻¹ coarse woody debris 0.5 T C ha⁻¹ leaf litter

Predicted Effects on CO2 Exchange

Photosynthesis: 15% Reduction

Autotrophic Respiration: 10% reduction

Decomposition: coarse woody debris takes 10 years to decay and leaves decay in 1 year

= Loss of ~1 T C ha⁻¹ in first year

Natural variability (Inter-Seasonal/Inter-Annual/Site-Site)

•Inter-seasonal variability is about 15%

•Inter-annual variability is about 15%

Site-Site variability is about 15%

Percentage of Canopy removed is similar to

- Inter-seasonal variability
- Inter-annual variability
- Site-Site variability

therefore, detection of a logging signal in the tower data is difficult, but we can take advantage of the high precision of eddy covariance.

30-minute averaged co2 exchange (NEE) is integrated to determine net exchange over long periods

Cumulative Carbon Exchange Over 3 Years

Comparison by year (logged site data only)

Comparison with Km 67

Comparison with Km 67

Removing interannual variability via the km 67 control site, in the year following logging the logged site emitted 1-2 TC ha⁻¹. The pre-logging relationship with the control site is then re-established.

Three estimates of logging effect are consistent:

- 1. Biomass decomposition
- 2. Logged site tower before vs after
- 3. Comparison with control site

Vigorous understory growth likely contributes to the rapid return to the pre-logging levels of CO2 exchange.

Gap tower

Comparison with Gap Tower Fluxes

•Fluxes are similar

Comparison with Gap Tower Profiles

- Night CO2 Profile similar (air stratified across gaps)
- Day gap profile near ground more well-mixed

Conclusions

- Reduced impact selective logging did not have a major impact on net carbon exchange
- A transient moderate carbon release was observed, of order 1-2 T C ha⁻¹.
- Gaps are not showing signs that they are preferential vents for CO2
- With repsect to carbon exchange, the forest appears capable of rapid recovery (1-2 yrs) after reduced-impact selctive logging.

Thanks: Dan Hodkinson Bethany Reed, Daniel Amarral, Marcy Litvak, Fernando Leão, Roberto Cardoso, Antonio Oviedo, Lisa Zweede and IBAMA, NASA and INPE.