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ABSTRACT

Wave activity diagnostics are calculated for four different baroclinic wave life cycles, including the LC1 and
LC2 cases studied by Thorncroft, Hoskins, and MclIntyre. The wave activity is a measure of the disturbance
relative to some zonally symmetric, time-independent basic state, which need not be the initial zonally averaged
state and which satisfies a finite-amplitude conservation relation. The wave activity density and fluxes may be
calculated in terms of Eulerian variables provided that the potential vorticity is a monotonic function of latitude
on isentropic surfaces in the basic state. The LC1 and LC2 experiments used initial states in which the potential
vorticity (PV) did not satisfy this monotonicity condition. Therefore two approaches are taken. The first is to
define a basic state that is not the initial state and use this to calculate the wave activity diagnostics. The second
is to carry out new LC1- and LC2-type experiments on initial states in which the monotonicity condition is
satisfied. New basic states are generated by PV rearrangement and inversion.

The results allow quantification of the difference between LC1- and LC2-type life cycles. They also show
that LC1- and L.C2-type behavior occurs for different initial states other than those used by Thorncroft, Hoskins,
and Mclntyre and that the classification is therefore robust in terms of the potential vorticity field and wave
activity diagnostics. If one were to consider only eddy kinetic energy, the distinction is no longer clear. In fact,
in the evolution of eddy kinetic energy the modified LC1-type life cycle resembles LC2 and the modified LC2
more than it resembles LC1.

The results also shed new light on the role of wave propagation in baroclinic life cycles. In particular, it is
found that during the later stages of the life cycle the pattern of equatorward wave activity flux that has often
been interpreted as associated with equatorward wave propagation in the subtropical upper troposphere is in fact
associated primarily with advective transport of wave activity.

New finite-amplitude expressions are presented for the wave activity associated with potential temperature
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gradients on the lower boundary. Problems with using PV rearrangement techniques are discussed.

1. Introduction

Eliassen—Palm flux (hereafter EP flux) cross sec-
tions have been widely used as a diagnostic for baro-
clinic wave life cycles (e.g., Edmon et al. 1980; Thorn-
croft et al. 1993, hereafter THM). The EP flux pattern
has two important implications. First, its divergence is
a measure of the wave forcing of the zonal-mean fiow
and can be interpreted as an eddy-induced force per
unit mass or, equivalently, in many cases of interest, as

! The equivalence is well known for quasigeostrophic dynamics.
A similar relation has been found for semigeostrophic dynamics
(Magnusdottir and Schubert 1991). Andrews et al. (1987, section 3.9)
and Mclntyre and Norton (1990) discuss other more general cases.
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the latitudinal eddy potential vorticity flux.' Second, it
indicates wave propagation, being the flux of a con-
servable wave property, known as the Eliassen—Palm
wave activity.

The appearance of the EP flux cross sections
prompted Edmon et al. (1980) to distinguish four dis-
tinct stages to baroclinic life cycles, namely (i) linear
growth, (ii) low-level nonlinear saturation, (iii) up-
ward and equatorward propagation of wave activity,
and (iv) low-latitude nonlinear saturation. The wave
activity flux interpretation of the EP flux was particu-
larly important in making these distinctions { Held and
Hoskins 1985). However, one drawback in using the
EP flux as a wave activity flux is that the conservation
relation for EP wave activity holds only for small-am-
plitude waves, whereas the baroclinic wave life cycles
grow far into the nonlinear regime. Thus, even for adi-
abatic and frictionless dynamics there still is a source/
sink term in the conservation relation for EP wave ac-
tivity associated with nonlinear effects.

There is now a well-defined method for constructing
wave activity conservation relations valid for finite-am-
plitude disturbances; that is there are no source/sink
terms provided that the dynamics is conservative. This



2318

method is based on the energy-Casimir or momentum-
Casimir methods pioneered by Arnol’d to prove sta-
bility theorems for Hamiltonian systems. Its usefulness
for constructing wave activity conservation theorems
was first shown by McIntyre and Shepherd (1987).
The explicit forms of such conservation relations for
the primitive equations were first derived by Haynes
(1988, hereafter H88). Unfortunately, the wave activ-
ities so constructed have not yet been shown to have
any simple relation to forcing of the mean flow, outside
the small-amplitude regime. Nonetheless, they may still
be used as a quantitative diagnostic for the waves them-
selves.

One of the attractions of such conservation relations
is that the quantities appearing in them, that is, the
wave activity density and the wave activity flux com-
ponents, are expressed in terms of Eulerian dynamical
variables and do not require knowledge of particle dis-
placements. This is to be contrasted with the gener-
alized Lagrangian mean formulation of Andrews and
MclIntyre (1978). The absence of particle-displace-
ment information relies on the fact that there are suf-
ficient materially conserved quantities and that such
quantities are monotonic functions of the relevant
geometric coordinate. For the primitive equations the
relevant quantities are potential vorticity (hereafter
PV) and potential temperature. Thus for the primitive
equations the wave activity quantities may be ex-
pressed in terms of Eulerian variables only if both the
potential temperature is a monotonic function of
height and (more problematically) the PV is a mono-
tonic function of latitude.

Quantification of the waves necessarily requires a
decomposition of the flow into a basic state part and a
wave part. For the finite-amplitude wave activity di-
agnostics the basic state is simply a prenominated flow
that is a self-consistent steady solution of the equations
of motion. Wave activity conservation follows if this
basic state has some invariance, for example in time in
which case the wave activity is referred to as ‘‘pseu-
doenergy’’ or in a particular direction in which case the
relevant wave activity is referred to as ‘‘pseudomo-
mentum.”’ If the basic state is not a self-consistent un-
forced solution of the equations of motion, then the
wave activity conservation relation contains source/
sink terms, even in the absence of nonconservative ef-
fects acting on the waves (H88). In this paper we shall
concentrate on the use of the wave activity whose con-
servation arises from the longitudinal invariance of the
basic-state flow. This is generally called the angular
pseudomomentum since its conservation arises from
the invariance of the basic state to rotation about the
earth’s axis. We shall call it pseudomomentum for
short. The steadiness of the basic flow is in contrast to
the basic state for the generalized Eliassen—Palm re-
lation, for example, which is the instantaneous longi-
tudinally averaged state and is therefore time depen-
dent. This aspect of the definition of the basic state has
some disadvantages; that is, the difference between the
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actual flow and the basic-state flow may become very
large as the system evolves in time so that it may no
longer seem sensible to regard the difference between
the actual and basic flows as being due to waves. How-
ever, it also has some potential advantages in that it
allows flexibility in the choice of the basic state.

These new wave activity diagnostics have already
been used in a number of different contexts to study
the evolution of wavy flows. For example, Scinocca
and Peltier (1994 ) have presented such diagnostics for
mountain wave simulations, using the expressions for
finite-amplitude pseudoenergy density and flux derived
by Scinocca and Shepherd (1992). Brunet and Haynes
(1996) have recently used pseudomomentum diagnos-
tics for the shallow-water equations to study reflection
of Rossby wave trains from low-latitude wave breaking
regions.

Here we apply such diagnostics to baroclinic life cy-
cle simulations, concentrating in particular on the two
different types of life cycle behavior noted by THM.
The only difference in initial conditions for the two life
cycle experiments, LC1 and LC2, is the addition of a
barotropic component to the wind so as to increase the
cyclonic shear in midlatitudes for the case LC2 com-
pared to LC1. However, the subsequent development
for the two cases is quite different, as was documented
in THM. In the case of LC1 the picture that emerges is
that of Rossby wave activity propagating upward into
the jet after the onset of low-level saturation, followed
by a second saturation event in the upper troposphere
associated with Rossby wave breaking on the equato-
rial side of the jet. This last stage of the life cycle is
analogous to an absorbing Rossby wave critical layer.
This is exactly the stage where LC2 differs markedly
from LC1. In the case of LC2, the wave breaking that
occurs takes place on the cyclonic side of the jet. These
two life cycles were originally studied by Simmons and
Hoskins (1980), who used the term ‘‘anomalous’ to
describe LC2.

One complication that arose in the application of
wave activity diagnostics to these flows was that the
initial states used by THM for their LC1 and LC2 ex-
periments do not satisfy the monotonicity condition on
PV. For example, Fig. 1a shows PV variation on a num-
ber of different isentropic surfaces in the LC1 basic
state. Figure 1b shows the same for the LC2 basic state.
In both cases there is a PV maximum at latitudes be-
tween 50° and 60°N, depending on the particular is-
entropic surface. This is interesting in itself in that such
life cycles, particularly LC1, have been considered over
the past decade or so as paradigms for nonlinear baro-
clinic instability. One might argue that a more straight-
forward example of baroclinic instability would be hav-
ing an initial state in which PV was a monotonic func-
tion of latitude on interior isentropic surfaces, with the
instability arising purely from the interaction between
the positive latitudinal gradient of PV (on isentropic
surfaces) in the interior and the negative potential tem-
perature gradient at the ground as is the case in the
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FigG. 1. Relative Mmagnitude of PV g a functjon of latitude on isentro (lowest PV), 310K (next lowest PV),

PiC surfaces 305 K
320 K (next highest PV), and 339 K (highest PV) for the initial state of (a) LC1 and (b) LC2,
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some stage during the life cycle, with little role for the
surface potential temperature gradient.

Even when the basic-state PV distribution is non-
monotonic, it is still possible to define a pseudomo-
mentum by using Lagrangian information (MclIntyre
and Shepherd 1987). In principle, such information
could be extracted from the numerical simulation.
However, it is to be expected that the resulting pseu-
domomentum will not be single signed. It therefore
loses its appeal as a diagnostic tool since there is always
the possibility of the simultaneous appearance of bal-
ancing amounts of positive and negative pseudomo-
mentum within the flow. The nonmonotonic PV distri-
bution therefore means that for practical purposes it is
not possible to take the initial states of LC1 and LC2
as the basic states, at least not without restriction. In
fact it is possible to use the Eulerian expressions to
evaluate wave activity in certain parts of the flow, that
is, in those parts of the flow where fluid parcels origi-
nate from and stay within a span of latitudes with a
monotonic distribution of PV. Some such diagnostics
will be presented in sections 4 and 6. They provide a
useful quantification of the differences between LC1
and LC2. More generally, it is necessary to generate
alternative zonally symmetric states in which PV is ev-
erywhere a monotonic function of latitude. These sym-
metric states may be used for two purposes: either as
basic states from which to calculate the wave activity
diagnostics for the LC1 and LC2 runs, or as initial
states for alternative baroclinic life cycle simulations.
The first approach is reported in section 4, the second
in section 5, and both are considered in section 6.

How are alternative states to be generated? Since the
requirement is for PV to be a monotonic function of
latitude on isentropic surfaces, the most straightforward
way to meet this requirement is to specify the PV dis-
tribution on such surfaces. However, there are a num-
ber of technical problems with this approach associated
with the fact that, in this study, the PV is not a model
prognostic variable and potential temperature surfaces
are not model coordinate surfaces. These issues and
details of the rearrangement are discussed in section 3
and appendixes A and B.

2. Wave activity diagnostics, including lower-
beundary contributions

The derivation of finite-amplitude wave activity con-
servation relations for the primitive equations, includ-
ing that for angular pseudomomentum, can be found in
H88. For completeness, we shall write down the ex-
pressions used here. As noted above, any application
of pseudomomentum diagnostics requires the definition
of a zonally symmetric, steady basic state that is a so-
lution of the equations of motion. We shall let (), de-
note a basic-state variable and (), denote the deviation
of that variable from the basic state, such that (-) = (+),
+ (*).. The independent variables are the usual spher-
ical coordinates (\, ¢), longitude and latitude in the

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 16

horizontal, and potential temperature # in the vertical;
a is the radius of the earth. The form of the conservation
law for pseudomomentum under adiabatic and friction-
less conditions may be written as

0A OA 1 OFW
— 4 . -
ot VF ot +acosqS O\
(@ Q)
1 O(F'® cosd) 4 OF ~0, 1)
a cos¢ O¢ . o0

where the pseudomomentum density A is given by

A = —o.u, cosd
P, . 8 . R
+0 f (P, — PYy—=mo(Py+ P,0)dP (2.2)
0 oP
and the components of the flux are given by

FM=yA — %ao(uﬁ —v2)cosp — F(p., po, ) cos d,

(2.3a)
F® = yA — o4v,u, coso, (2.3b)
F® =g-lg7'p,M,,. (2.3¢)

In the above, (u, v) are horizontal components of the
velocity, 0 = —g~!'0p/80 is the pseudodensity, P is
PV, and M = I16 + gz is the Mongomery potential,
where z is geometric height, Il = ¢,(p/p,)"“ the Exner
function, and p; is a reference pressure. The function
mo(+) is defined by

¢
mo(Po(¢,9))=f0 oo(, 6)acosddd  (24)

and is single valued when, for each 6, PV is a mono-
tonic function of latitude. The corresponding m, rep-
resents a measure of position in the latitudinal direction
based on the basic-state PV field on each isentropic
surface. The function 7 is defined by

%(pey Do, 0)
=8

e

" KpP
o (po+ P)

Note that the sign convention is different from that of
H88 so that under quasigeostrophic scaling A agrees
with the usual definition of Eliassen—Palm wave
activity.

In the context of baroclinic instability, it is relevant
to recall that the total wave activity in the interior is
not necessarily conserved but that there is a reservoir
of wave activity on the boundary, which may be freely
exchanged with the interior of the flow. Indeed, in
many examples of baroclinic instability, the simplest
being the Charney problem, there is a flux of positive
wave activity out of the boundary into the interior, and
the growing disturbance is characterized by increasing
positive wave activity in the interior and increasing
negative wave activity on the boundary. Expressions

H(po + p, 6)dp. (2.5)
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for the wave activity density on the lower boundary
under quasigeostrophic scaling are well known and
involve the boundary potential temperature distri-
bution. See McIntyre and Shepherd (1987) and
Shepherd (1989) for details, including the finite-
amplitude case. Here we extend the H88 analysis to
calculate the finite-amplitude contribution to the
pseudomomentum from the boundary potential tem-
perature gradients in the primitive equations. We
give an expression only for the pseudomomentum
density, that is, for the contribution to the pseudomo-
mentum from any finite part of the boundary. It
should also be possible to calculate contributions to
the pseudomomentum flux, both into the domain
from the boundary and along the boundary. How-
ever, to our knowledge this has not yet been done
even for the quasigeostrophic case.

As in H88, we consider the sum of two global in-
variants, the angular momentum ¥ about the earth’s
axis plus a suitable Casimir €, being the integral over
the fluid domain of the density multiplied by a function
of PV and potential temperature. The boundary should
be allowed to intersect potential temperature surfaces.
Note that the boundary of the fluid domain is therefore
free to move in three-dimensional (\, ¢, 6) space. Since
both JX and € are constants of the motion, it follows
that the quantity A4 = — (M + € — My, — &), where
Mo and 6, are, respectively, the angular momentum and
the Casimir evaluated for the predefined basic state, is
also a constant. The sign convention has been chosen,
as earlier, to agree with the normal conventions of qua-
sigeostrophic theory. In terms of dynamical variables
for isentropic coordinates, J + € is given by

M+e= J. {o(ucosd + Qa cos’p
+ C(P, 8))}a’ cosddddddn, (2.6)

where C is the function defining the Casimir and 9 is
the fluid domain. Thus <4 is given by

A= —=(M+ C— My — )
= —j {o(u cosd + Qa cos’p + C(P, 6))}
20
X a® cospdfdpd\
+ f {oo(up cosg + Qa cos’ep
20D
+ C(Py, 8))} a® cospdbdddr
- f {o(u cosd + Qa cos’p
P\ (DN D)
+ C(P, 9))}a? cospdfdpdn
+ j {oo(uy cosep + Qa cos’p
H\(DNDY)

+ C(Po, 0))}a* cospdfdpd\, (2.7)
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where 9, is the fluid domain in the basic state. It is
useful to introduce the notation ¢, (\, €) as the latitu-
dinal position of the boundary for specified values of A
and 6 and ¢,0(f) as the basic-state position of the
boundary. Thus the boundary of D, is defined by ¢
= ¢,0(9), and the boundary of D by ¢ = ¢,(X, 8).
Note that the decomposition of the domain of integra-
tion is required because disturbed flow quantities are
defined only in D and basic-state quantities in 9D,. Fig-
ure 2a shows a schematic representation of the projec-
tion of these different regions onto an isentropic sur-
face. Figure 2b shows the corresponding slice through
the domain at a fixed value of \.

Similar considerations of the change in the fluid do-
main from the basic state to the disturbed state are nec-
essary in the semigeostrophic case, when the bound-
aries appear as freely moving in geostrophic coordi-
nates (Kushner and Shepherd 1995a,b).

It remains to show that, taking account of varia-
tions in the fluid domain, the function C may be cho-
sen so that <4 is second order in wave quantities.
Combining the first two integrals, the integrand may
be written

—{o(ucosg + Qa cos?¢ + C(P, §))}
+ {oo(ugcose + Qacos’dp + C(Py,9))}

= - e B CH(Pa )
—L 0
acos¢ ¢
—0,{C(Py, ) + (uy + ad cos¢) cos ¢

= PoCp(Po,0)}

(4.Cp(Py, 0) cos)

- ue{aocow ; ii[cp(Po, 9)1}

o¢
—ou.cosp —oCy(Py,P,,0). (2.8)

The first two terms are in the form of a divergence and
may be written as a surface integral over the boundary
of D N Dy. The last two terms are second order in
disturbance quantities, with C,( Py, P,, 0) being defined
as C(P,0) — C(Py, 0) — P.Cp(Py, 0). It follows that
the integral over 9 N 9D,, neglecting the boundary
terms for the time being, is second order in wave quan-
tities if

10
op COSP + 296 [Cp(Po, )] =0

(2.9a)
and
C(Py, 0) + (uo + afd cos¢) cos¢

- P()CP(P(), 9) = (. (2.9b)

These are just the conditions derived in H88 and they
lead to the expression (2.2). As was noted there, the
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two conditions are compatible, with (2.9a) being pro-
portional to the ¢ derivative of (2.9b).

Returning to the boundary terms, we note that each
is generally first order in disturbance quantities. The
boundary integral arising from the divergence in (2.8)
is generally first order because the integrand is propor-
tional to terms such as u, and v,. The integrals over
regions D\ (D N Dy) and D\ (D N Dy) are first order
because the volume of such regions is proportional to
the displacement of the boundary of the fluid domain.
However, noting the equality in (2.9b), it follows that
each of these terms is second order if

(up cosd + Qa cos’d + C(Py, 0)) | p=p,06)

= PoCp(Po(dr0(0), 6),0) = 0, (2.10)

that is, if Cp(Py, #) vanishes on 89,, the boundary
of GDO .

Thus <4 is a second-order wave quantity provided
that C satisfies the conditions in (2.9b) and (2.10), and
it may be evaluated in the form

A= Aa? cospdfdpd\

Mo

- f Cp(Py, 8)(v.dp + u, cosdpd\)add
A(DNDy)

- f {o[u cos¢ + Qa cos’d
2\(2N%)
+ C(P, 8)]}a? cosdpdfddd\
+ f { ool up cose + Qa cos’dp
A (PN9)

+ C(Py, 6)]}a? cosdpdfdpdX,

where the first integral is a contribution from the inte-
rior of the fluid domain and the second, third, and
fourth integrals may be regarded as representing the
boundary contribution. We are free to impose the con-
dition (2.10) on C, as an initial condition on the dif-
ferential equation (2.9b) providing that 89, corre-
sponds to only one value of ¢ on each 8 surface. Prob-
lems would arise only if for each part of the fluid
domain intersecting a 8 surface there was more than
one value of ¢,0(8). This is not the case if the value
of 6 at the surface, 8,¢(¢), is a monotonic function of
¢ or has at most one maximum. Consider the case rel-
evant to the real atmosphere, where 6,,(¢) has a low-
latitude maximum, 87*. Then for § < 87 the inter-
section of the 6 surface with the fluid domain consists
of two distinct areas, each with a different low-latitude
boundary, or else one area with a low-latitude bound-
ary. Whether there are one or two such areas, the or-
dinary differential equation (2.9b) may be integrated
from the low-latitude boundary, applying (2.10) as ini-
tial condition, to the pole, for each area independently.
For 6 = 67 the fluid domain covers the whole sphere

(2.11)
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FiG. 2. (a) Schematic diagram of the fluid domain projected onto
an isentropic surface in the basic state 9y and the disturbed state D.
A9 (full contour) is the boundary of 9, and 99, (dashed contour) is
the boundary of Dy; ¢,0(6) indicates the latitude of intersection of the
fluid domain in the basic state with the surface of the earth; and ¢,(\,
9) indicates the latitude of intersection of the fluid domain in the
disturbed state with the surface. As indicated in the lower-left-hand
corner, the vertically hatched region is D\(D N 9Dy), that is, the region
containing points that are within the fluid domain in the disturbed
state but outside the fluid domain in the undisturbed state. The hor-
izontally hatched region is Do\(D N D), that is, the region containing
points that are within the fluid domain in the undisturbed state but
outside the fluid domain in the disturbed state. (b) Schematic diagram
of a slice through the fluid domain at a fixed longitude, \. The ab-
scissa is potential temperature, and the ordinate is latitude. Again,
the full contour indicates the disturbed state; the dashed contour in-
dicates the basic state. ¢,o(8) and ¢,(\, #) have the same meaning as
in (a). 0,,0(¢) indicates the basic state’s potential temperature at lat-
itude ¢, and 8,(\, ) is the disturbed state’s surface surface potential
temperature at longitude \ and latitude .
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and the condition (2.10) is not needed. In that case the
second-order property holds irrespective of the initial
condition applied to (2.9b). For the case where the
lower boundary is a 6 surface, D = Dy, so the third and
fourth terms vanish, while the integration on each 6
surface is over the whole sphere, so the second term, a
boundary integral, vanishes. It is only when there are
potential temperature variations on the lower boundary
that these terms give rise to a boundary contribution to
the wave activity.

It is interesting to evaluate the boundary contri-
bution in the limit of small wave amplitude. To fix
ideas we assume the ‘‘Northern Hemisphere’’ con-
figuration, two different views of which are shown
in Figs. 2a and 2b, where 9, is the region ¢
> ¢, (0) and D is the region ¢ > ¢, (A, ). Note that
A(D N Dy) coincides in part with 99 and in part with
09y, depending on whether ¢,.(\, 8) is greater than
or less than zero. On 8D,, Cp(Py, 6) is zero by def-
inition. Thus there is a contribution to the first bound-
ary term in (2.11) only when ¢;, > 0. There Cp(P,,
) may be approximated by Cpp(Po, 8)Po,¢s. and
hence by —aoyp,. cos dyo, using (2.9a). Furthermore
the v.d¢ term may be neglected at leading order, so
that the integral is over N\ and 6, with the leading-
order integrand —ao, €08 *¢,oU.Ds. .

Regarding the second and third boundary terms, the
integrands may be approximated using linearized ex-
pressions and then simplified using (2.9a), (2.9b), and
(2.10) to give

[ootte + (P — Ppo) 00 PoCpp( Py, 8)Pogla® coseyg
(2.12a)

and

[(¢ — buo)ToPoCrp(Po, 8)Pogla® cosyy, (2.12b)

respectively, where the second is evaluated only for
\ such that ¢,, < 0 and the third for \ such that ¢,,
> 0. The regions are defined, respectively, by ¢,.
=¢ ~ o< 0and 0 < ¢ ~ dpo = .. From the
above with further use of (2.9a) it follows that the
boundary contribution is, to second order in distur-
bance quantities,

—f do J. ao<ue¢be + %aaoPodJﬁ,,)az cos2gpodX\,

(2.13)

where quantities inside the integral are to be evaluated
for ¢ = ¢,0(#) and the 6 integral is over the range of
0 appearing on the boundary.

An alternative route to the linearized expression for
the boundary contributions to the wave activity is via
the linearized form of the EP relation in isentropic co-
ordinates, given by Andrews (1987). Here straightfor-
ward integration over the fluid domain gives a contri-
bution to the rate of change of wave activity from the
flux out of the lower boundary. This flux may be shown
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to be equal to minus the rate of change of the integral
of a second-order wave quantity over the lower bound-
ary and the latter quantity, which is identical to (2.13),
may therefore be interpreted as a boundary contribution
to the total wave activity, subject, of course, to the usual
caveats about nonuniqueness. Details are given in ap-
pendix C.

It is well known that within quasigeostrophic theory
the pseudomomentum includes a contribution involv-
ing the boundary potential temperature distribution. As
noted earlier, this term plays a crucial role in Charney-
type baroclinic instabilities. The ‘‘boundary’’ terms ap-
pearing in (2.11) are the exact analogs of this contri-
bution. The linearized form of these terms, given in
(2.13), makes the connection more explicit. Note that
it is the second term that dominates under quasigeo-
strophic scaling and that the only wave quantity in-
duced is ¢,., determined by the boundary configuration
in @ coordinates, or, equivalently, by the 8 distribution
(as a function of A\ and ¢) on the boundary. Note also
that this term is negative as expected by analogy with
quasigeostrophic results.

For completeness we note that it is possible to pro-
ceed from the finite-amplitude boundary contribution
in (2.11) to the finite-amplitude expression for the
boundary contribution in quasigeostrophic theory given
by Shepherd (1989). First, note that under quasigeo-
strophic scaling the integrand in the second term of
(2.11) is O(Rossby number) smaller than the inte-
grands in the third and fourth terms. Furthermore, at
leading order in Rossby number, the integrands in both
third and fourth terms may be approximated by Py(¢,
0)Cp(Py, 0). Denoting the ¢-independent leading-or-
der contribution to o, as 7, it follows that the leading-
order approximation to the integrand is

Ga’fy(sing — sing,(9)) cosp, (2.14a)

where f; is the Coriolis parameter, evaluated for a suit-
able latitude. Note that at leading order under quasigeo-
strophic scaling, ¢ may be treated as constant over the
boundary, since the boundary itself must be closely ap-
proximated by a 8 surface. The leading-order approxi-
mation to the boundary terms in (2.11) is therefore

Fp0(P)
f cospddpd\ f ca’f,{sing — sing,(9)}db,

o))
(2.14b)

where 6,(\, ¢) is the distribution of # on the lower
boundary, as a function of \ and ¢, and 8,,(p) is the
basic-state value. Integrating by parts, and noting that
b60(00(P)) = ¢, it follows that the boundary contri-
bution is

ff dddN\c a® f, cosd

J'gb()‘vd’) . d . X 9
X J, o Oe= O g5 sindio(®)db. (215)
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Note that this is negative if ¢, () is a decreasing func-
tion and f, > 0, as has been assumed above. Under the
usual quasigeostrophic restriction that the flow is con-
fined to a small range of latitudes, the above may be
shown equal to the finite-amplitude expression given
by Shepherd (1989), taking account of an extra factor
of cos¢ since here it is explicitly the angular pseudo-
momentum, rather than the (linear) pseudomomentum
on a g plane, that has been considered.

A final note concerns the numerical calculation of
the boundary contribution to the wave activity. The sec-
ond term in (2.11) is, as noted, second order in wave
quantities but requires integration over the boundary of
D N 9Dy, which may be highly contorted. Since it is
computationally more straightforward to perform a vol-
ume integral, the following strategy is proposed: 9
N D, in Fig. 2a is divided into two parts, 9 and (D
N Do)\ D, where P is the largest longitudinally sym-
metric region that lies entirely within D M 9,. Then the
first two terms in (2.11) may be rewritten as the inte-
gral of A over 9 plus a boundary integral over 09 plus
the integral of the left-hand side of (2.8) over (D
N D)\ D. The resulting expression for the total wave
activity is

A= f_Aaz cospdbded\
D

- f aCp(Py, 0)u,cosdpdrdbf
e

D

—f {o(ucosp + Qacos’dp + C(P,0))
(DNDI\D

— 0o(ugcose + Qacos?d + C(Py,0))}
X a* cos pdfddd\

—f o(ucosd + Qacos’d
D\ (DNDg)
+ C(P,0))a?cos pdfdddr

+J. { go(up cosg + Qa cos’e
2\ (PN D)

+ C(Py, 0)) }a? cospdfdpdn. (2.16)

While the integrand in the third term is first order in
wave quantities, it is being integrated over a region (9D
N Do)\ D that is first order. Therefore in this alternative
representation of the wave activity the various terms
are all second order, and calculation of them is likely
to be well conditioned. Furthermore, since the differ-
ence between D N D, and PDis first order, it seems valid
to regard the integral over P as the only ‘‘interior’’ term
and the remaining integrals as boundary terms.

3. Generating alternate basic states

If the wave activity densities and fluxes are to be
evaluated in terms of Eulerian flow quantities, then PV
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in the basic state must vary monotonically in latitude
on each isentropic surface [ see McIntyre and Shepherd
(1987) for a further discussion]. As we have already
noted, perhaps the most natural choice for the basic
state, that of the zonally symmetric initial state, does
not satisfy this requirement for LC1 and LC2. The so-
lution to this problem is, in principle, simple, namely
to choose an alternative basic state as close as possible
to the initial state but with a monotonic PV distribution.

The first approach taken was of simply applying a
heuristic correction to the velocity field and then using
the model-balancing routine to obtain the mass field.
However it proved difficult to find such a correction
that was large enough to make the PV monotonic but
small enough for the new basic state to be useful. A
second, more systematic approach was to specify the
PV field in each isentropic layer, so that meeting the
monotonicity condition was guaranteed. The specified
PV field was then inverted —assuming gradient wind
balance and taking account of spherical geometry and
the nonisentropic lower boundary—to deduce the ve-
locity and pressure distributions. Details of the inver-
sion calculation are given in appendix A.

Within the constraints of the monotonicity require-
ment, there are many different possible specifications
of the PV field. Clearly, one possibility would have
been to solve the variational problem for the PV field
that, within the monotonicity requirement, minimizes
some measure of the initial wave activity (that of the
initial state with respect to the alternate basic state).
The chosen approach was to ‘‘rearrange’’ the PV field
in each layer so that it was monotonic. By ‘‘PV rear-
rangement’’ we mean that fluid elements in each is-
entropic layer are redistributed in latitude, with each
element preserving its value of PV. We considered two
different approaches to such rearrangement, both of
which are discussed in detail in appendix B. First, we
required that the area of each element, as well as its PV
value, was preserved during the rearrangement. This
approach is ad hoc but convenient because the rear-
rangement defines the new PV field directly as a func-
tion of ¢ and 6. However, when the resulting PV field
was inverted, it turned out that mass had been lost; the
resulting surface pressure was too low. This is perfectly
acceptable in principle, but in practice the correspond-
ing basic state is too far from the initial state to be of
use. Second, we required that the mass of each element,
as well as its PV value, was preserved during the re-
arrangement. This second approach might be argued as
less ad hoc because the resulting alternate basic state
is, in principle, accessible from the initial state through
purely adiabatic and frictionless evolution. However, it
is also technically more complicated than the first be-
cause the rearrangement defines the new PV field in
each isentropic layer as a function of mass, not of ¢.
The position of each element is unknown and must be
solved for as part of the inversion. Thus, the rearrange-
ment became closely linked with the inversion process,
updating the density of fluid elements, and therefore
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their location, as we iterated toward a solution. This
second approach gave satisfactory resuits; however, if
one were to require more flexibility, for example, want-
ing to impose a certain minimum isentropic gradient to
the PV distribution, it would seem natural to relax the
requirement of PV conservation for each element but
to continue to impose that the mass-weighted integral
over isentropic layer be constant; that is, A(J cPdV)
= 0. This is equivalent to the requirement that the total
circulation around the boundary of each isentropic
layer remain constant. In this case one might think of
the PV rearrangement in going from basic state to ini-
tial state or vice versa as being accomplished by no-
tional diabatic and frictional processes. Potential vor-
ticity would have been diluted in some regions and con-
centrated in others; however the total ‘‘PV-substance,”’
or the total mass-weighted PV (Haynes and Mclntyre
1990), would have been conserved along with the total
mass in that layer.

As it turned out, the PV distribution obtained with
the second method, that of PV and mass conservation,
had gradients close to zero in some regions of the flow.
In principle, this poses no problem; that is, the basic
state need not have a strictly monotonic PV distribu-
tion, it needs only PV gradients that do not change sign
on isentropic surfaces. Practical problems arise because
the model is formulated in sigma coordinates with dis-
crete vertical levels, whereas the idea of rearrangement
of PV in isentropic layers requires that the inversion
algorithm be formulated in isentropic coordinates. The
PV field on isentropic surfaces is extracted from the
sigma coordinate model and inserted into the inversion
algorithm. The PV is rearranged and inverted to give
the corresponding wind and temperature fields, which
must then be reinserted into the sigma coordinate
model. The first important point is that, even if there is
no PV rearrangement, the wind and temperature fields
inserted into the model are not the same as those in the
original state. The second important point is that, while
such wind and temperature fields have been derived
from a PV inversion algorithm, there is no guarantee
that they are in balance in the sigma coordinate model.
Both of these inconsistencies arise, in our view, be-
cause the finite vertical resolution of the sigma coor-
dinate model implies that there is no simple expression
of the model dynamics in isentropic coordinates. It is
possible that the idea of PV rearrangement in isentropic
layers may be formulated in such a way that it is exactly
consistent with the finite vertical resolution sigma co-
ordinate model. However, since our aim is the practical
one of generating new and useful basic states, we have
chosen not to pursue this possibility. We emphasize
that the usefulness of any ideas of PV rearrangement,
which has been suggested in a number of contexts (e.g.,
Mclntyre 1982) as an approach to numerical experi-
mentation, depends on such inconsistencies not being
too great at practical model resolution. Of course, one
of the great attractions of a model formulated in isen-

MAGNUSDOTTIR AND HAYNES

2325

tropic coordinates would be that such inconsistencies
would not arise.

The practical approach taken, bearing in mind the
above, was as follows. First the PV was interpolated
from the sigma levels of the numerical model used for
the life cycle integrations to the potential temperature
surfaces of the inverter. Two inversions were then per-
formed, one for this PV field and one for a rearranged
PV field. The difference between these two inversions
represents the differences in the various balanced fields
due to the rearrangement. Rather than reinterpolating
the rearranged balanced winds and temperatures back
onto sigma surfaces and then reinserting them into the
model, the two inversions were used to calculate the
difference in the wind field on sigma surfaces due to
the rearrangement, and this difference was then added
to the original winds in the sigma model.

When PV of the resulting state was computed and
then interpolated to isentropic surfaces, the resulting
PV distribution was no longer monotonic everywhere.
The deviations were, however, minor and were dealt
with in a consistent manner.

4. Results for the LC1 and LC2 life cycles

The model used throughout this study is that used by
THM, that is, the baroclinic sigma-coordinate spectral
model developed by Hoskins and Simmons (1975), at
horizontal resolution of T95 restricted to zonal wave-
numbers with wave-6 symmetry and with 15 sigma lev-
els in the vertical; at sigma = 0.967, 0.887, 0.784,
0.674, 0.569, 0.477, 0.400, 0.338, 0.287, 0.241, 0.197,
0.152, 0.106, 0.060, and 0.018. The model is adiabatic
and frictionless except for V°® hyperdiffusion that is
added to the vorticity, divergence, and temperature ten-
dency equations with a decay rate of (4 h) ™! for the
smallest horizontal scales. For the LC1 and LC2 runs
we used exactly the same zonally symmetric initial
states as THM with a 0.001-mb noise added to the sur-
face pressure field at zonal wavenumber 6. Figures 3a,b
show the initial states for LC1 and LC2, respectively.
The only difference in initial states for the two life cy-
cles is the addition of a barotropic component to the
wind that is 10 m s~ westerly at 20°N, 10 m s~ east-
erly at 50°N, and varies linearly between the two lati-
tudes. THM found that development of the life cycle
was not sensitive to the structure and amplitude of the
disturbance except in timing of various features of the
life cycle. Thus we used small-amplitude noise rather
than the fastest-growing normal mode as our initial dis-
turbance. Consequently, the timing of various events in
our life cycle simulations is delayed from that of THM
by about 11-12 days.

As noted earlier, because of the nonmonotonic dis-
tribution of PV in the initial state of both LC1 and LC2,
the initial states could not be used as basic states for
the purposes of calculating wave activity diagnostics
everywhere in the flow. Two approaches were taken to
calculating the pseudomomentum flux and density.
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Fic. 3. (a) Initial winds (contour interval 2.5 m s™') and potential temperatures (contour interval is 25 K; 300 K has been subtracted) for
LC1, Z1. (b) As in (a) except for LC2, Z2. (c) As in (a) except for the modified LC1, Z1R. (d) As in (a) except for the modified LC2, Z2R.

First, we used the initial state as the basic state and
were therefore able to calculate pseudomomentum flux
and density reliably only equatorward of the latitude
dmax (8), at which there is a maximum in the initial PV
on each isentropic surface. This is with the additional
proviso that the fluid in the disturbed state equatorward
of max(6) did not arrive from latitudes poleward of
®max(0) in the initial state. Let us call the basic states
corresponding to LC1 and LC2 with the above restric-
tions Z1 and Z2, respectively. Second, for each of LC1
and LC2 we used not the initial state but another dy-
namically consistent state (close to it in a sense ex-
plained in section 3) as the basic state for calculating
wave activity diagnostics for LC1 and LC2. Let us call
these alternative basic states for LC1 and LC2 Z1R

and Z2R, respectively. Figure 3c shows the state
Z1R, winds, and potential temperature on sigma lev-
els, and Figure 3d shows the state Z2R. Note that the
differences between Z1 and Z1R, for instance, are
considerably smaller than the differences between Z1
and Z2, but they are still quite visible. In particular
the jet in Z1R has been shifted slightly poleward rel-
ative to that in Z1. The same is true for Z2 and Z2R.
Wave activities were then calculated using these al-
ternative states as basic states. Z1R and Z2R are gen-
erated from Z1 and Z2, respectively, as explained in
section 3. Details of how the PV of Z1 and Z2 is
rearranged are given in appendix B and details of
how the PV of Z1R and Z2R is inverted are discussed
in appendix A.
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Here we shall concentrate on three of the four stages
of life cycle development mentioned earlier:

1) linear growth,

2) upward and equatorward propagation of wave
activity, and

3) low-latitude nonlinear saturation.

a. Wave activity diagnostics for LC1

Figures 4a—h show the zonally averaged meridional-
plane (latitude and potential temperature) pseudomo-
mentum flux and the zonally averaged pseudomomen-
tum density referring to basic-state Z1 for days 17, 20,
22, and 23. Figures 5a—h show the same fields on the
same days when referring to basic state Z1R. We have
marked the location of the tropopause as a bold line
superimposed on the contours of pseudomomentum
density in Fig. 4b. Since the basic-state PV gradients
for Z1 are not monotonic, in Fig. 4 we have only com-
puted wave activity in areas equatorward of the latitude
bmax (6), at which there is a maximum in the initial PV
on each isentropic surface. There is only minor transfer
of fluid parcels across ¢, (8) as evidenced, for ex-
ample, by the evolution of PV on isentropic surfaces.
This is further reinforced by the similarity of the di-
agnostics in Figs. 4 and 5, when the wave has grown
enough for the difference between basic and initial
states to be of secondary importance. Note that Figs. 4
and 5 show only the region above the 300-K 4 surface,
since @ surfaces lower than this intersect the ground.
Referring to Figs. 3a—d, it may be seen that this effec-
tively concentrates attention to the area above the mid-
troposphere, at least in midlatitudes.

In previous papers, extensive use has been made of
EP fluxes for diagnosing life cycles. We have therefore
included EP fluxes for days 17 and 20 in Figs. 6a,b.
We choose to include only those two days because EP
fluxes can be interpreted as the fluxes of a conserved
quantity only for small-amplitude disturbances. Be-
yond day 20 the wave is of large amplitude, and the
usefulness of the EP flux as a wave—activity flux is
diminished. In order to facilitate comparison with the
wave-activity fluxes, we have superposed potential
temperature contours in Figs. 6a,b. Note that it is not a
trivial matter to transform conventional EP fluxes to
pseudomomentum fluxes since the dissection of the
flow into ‘‘basic state’” and ‘‘wave’’ parts is different
in the two cases. In the former, wave quantities are
defined as the difference from the basic-state value
measured on pressure surfaces, while in the latter they
are defined as the difference from the basic-state value
on isentropic surfaces [see Andrews (1987) for a more
thorough discussion]. If we made a purely geometric
transformation of the EP flux pattern from using pres-
sure as vertical coordinate to using zonal-mean poten-
tial temperature as a vertical coordinate, then the trans-
formation law for the flux components would be
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where ¥ indicates a component of the flux in isentropic
coordinates and (Jp/0¢ ); indicates that the derivative
is taken holding @ fixed. In other words, there would
be an extra term added to the vertical component of the
flux, whereas the horizontal component would simply
be multiplied by a certain factor.

Day 17 is at a stage in the life cycle LC1 when the
disturbance is still linear in the exponential growth stage.
Figures 4a,b show the concentration of wave activity
along the tropopause in the linear mode. As for any such
growing mode, the wave activity flux pattern in Fig. 4a
is convergent, leading to exponential growth in the pat-
tern of wave activity density seen in Fig. 4b. The dif-
ferences between Figs. 4a—h and 5a—h are solely due to
differences in basic state. These differences are small for
the fluxes in Figs. 4a and 5a and very large for the wave-
activity densities in Figs. 4b and 5b. The pattern in Fig.
5b is totally dominated by contributions due to differ-
ences between the initial state and the basic state. This
difference is predominantly in the zonally averaged flow
and is certainly not associated with ‘‘waves.”” There is
therefore little useful information in Fig. 5b at this time.
Figures 4a and Sa are reminiscent of the upper part of a
Charney-like EP flux diagram associated with a normal
mode [see Fig. 2b in Edmon et al. (1980)]. However,
note how the wave activity is distorted from the
Charney-like picture by the presence of the tropo-
pause—the wave activity flux extends along the tropo-
pause. A similar distortion is also perceptible in the cor-
responding EP flux, which is typical of early, linear
growth seen in Figure 6a.

Day 20 corresponds to the upward-propagation stage
of the life cycle. The shape of the flux pattern has now
changed from that in Figs. 4a and Sa. In Fig. 5d there
is still some signature of the difference between the
basic state and the initial state especially at upper levels
at low latitude and also at high latitudes (cf. Fig. 5b),
but in general the pattern is dominated by the baroclinic
disturbance. In both cases, Figs. 4c—4d and S5c-5d,
wave activity is now filling up the area in the tropo-
sphere along the tropopause, stretching far into low lat-
itudes at upper levels, as shown by the pseudomomen-
tum flux, Figs. 4c and 5c, and by the pseudomomentum
density, Figs. 4d and 5d. The same signature has, of
course, been identified previously in the EP fluxes and
is apparent in Fig. 6b. The pseudomomentum density
and flux together suggest that this propagation is inti-
mately connected with the tropopause itself. At lower
levels, note the lateral broadening of the area of upward
EP flux also seen in the pseudomomentum flux.

By days 22-23 LCI1 has reached its final stage of
low-latitude, upper-tropospheric saturation. Note the
change that has occurred in the pseudomomentum flux
in Figs. 4e and 4g and Figs. S5e and 5g. On day 22 the

(4.1)



2328

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 16

() ()
T T T T T T T T 369 T T T T T T T T
354’; .................................................. | 354; ..................................................................... |
BB e a ettt ey - ) P R
R . B |
............................ h e st it etaaaasaraosrsescnonnossansnnansns R R R R I I B PN
oL SN L - L RN NN R & 4
2 k]
g .............................. LR R N B e WA e
% B ] ‘é R R URRURURIN AW ]
2 28 e ittt - = 328k e et \ﬁ'\\\\““””!n .......................... N
.............................. At m\\\\\}ﬂﬂrm,
Sk ST ot ]
Mgk i form, ..................... i
t ....................... n\ﬁﬁ ¥ T’ff// .......................
s mtﬁ%ﬁﬁ“ TH e ]
00! ) 1 A \\‘TTTI L fffl/ I A
i . ) 0 20 30 a9 50 o8 79 80, . . 90
Latitude Ve v Latitude P
(b) (d)
T T T T T T T e T T T T T
354k 354}
3480 348
3421 342
s
3361 336F W{H om]
B o I\
i g \\
% 3301 5 330-
) — (23]
324 324 O
218 aigl
312 312k A
] sy
308/~ 306- V?
i
| WA (AN
] 10 20 30 40 50 69 70 8e 90 ] 16 20 30 ) 50 60 70 80 30
Latitude Latitude

[CONTOUR FROM 005 TO 125 BY .005 (X 1)]

[CONTOUR FROM .05 TO .9 BY .05 (X 1)]

F1G. 4. (a) Zonally averaged wave activity flux for LC1 referring to basic-state Z1 on day 17. The maximum vector (indicated in the lower-
left corner) has magnitude of 3.26 X 1072, (b) Zonally averaged wave activity density for LC1 referring to basic-state Z1 on day 17. Contour
interval is 5.00 X 10~>. The heavy contour indicates the location of the tropopause. (c) As in (a) except on day 20 and the maximum vector
is of length 4.99 X 1072 (d) As in (b) except on day 20 and the contour interval is 5.00 X 1072 (e) As in (a) except on day 22 and the
maximum vector length is 2.26 X 1072 (f) As in (b) except on day 22 and the contour interval is 0.100. (g) As in (a) except on day 23 and

the maximum vector length is 2.77 X 1072 (h) As in (b) except on day 23 and the contour interval is 0.100.

region of flux has been shifted equatorward, and the
flux tends to be more horizontal. A similar pattern often
shows up in the EP fluxes and indeed did in this case.
(See Fig. 15¢c of THM for an explicit example.) This
has often been interpreted as horizontal propagation of
wave activity. However we shall note below evidence
that it is mostly associated with advective transport of
wave activity rather than wave propagation. Given the
fact that the advective contribution to the wave activity
flux is not included in the EP flux and that the wave is
saturating at upper levels, the agreement between EP

fluxes and wave activity fluxes at this stage would seem
to be purely fortuitous. On day 23 (Figs. 4g and 5g)
the wave activity flux is pointing downward, and we
might interpret this as evidence of reradiation from the
nonlinear flow above. Note that the maximum length
of the flux arrows on day 23 represents about half the
magnitude of their maximum length on day 20, when
there was maximum upward propagation of wave ac-
tivity. The explanation for the double maximum in
wave activity density in latitude—seen in Figs. 4d, 5d,
4f, 5f, and more pronounced in Figs. 4h and Sh—will
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FiG. 4. (Continued)

become evident when we look at the field on isentropic
surfaces. On day 23 the pseudomomentum density has
filled the entire troposphere above the 300 K surface
from about 50° to 20°N, as seen in Figs. 4h and 5h.
Corresponding to the flux pictures in Figs. 4c and 5¢
and 4e and Se, a pronounced maximum in pseudomo-
mentum density at 20°N and 336-340 K is building
up, as seen in Figs. 4h and 5h.

Interpretation of the wave activity densities and flux
pictures is clarified if we examine the fields on an up-
per-level isentropic surface. Here we shall concentrate
on 336 K, which is at the lower edge of the low-latitude
maximum in pseudomomentum density. Figures 7a~-7c
show PV on the 336-K surface on days 20, 22, and 23,
respectively. On day 20 there are large-scale undula-

tions in the PV contours, indicating the presence of
waves of moderate amplitude. (The smaller-scale
structure to the PV contour closest to the equator is
almost certainly a numerical artifact, and we do not
regard it of any significance.) By day 22, tongues of
high PV air, indicative of Rossby wave breaking,
stretch into low latitudes and on day 23 are beginning
to roll up into vortices. That the pseudomomentum den-
sity is dominated by these PV features may be clearly
seen in Figs. 8a, 8b, 8c corresponding to days 20, 22,
and 23, respectively. The basic state in these calcula-
tions is Z1. Closer investigation of Fig. 7a reveals that
the meridional contour displacements are comparable
to the width of the region of concentrated gradients and
suggests that the linearized expression for the pseu-
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Fic. 5. (a) Zonally averaged wave activity flux for LC1 referring to basic-state Z1R on day 17. The maximum vector (indicated in the
lower-left corner) has magnitude of 3.25 X 107>, (b) Zonally averaged wave activity density for LC1 referring to basic-state ZIR on day 17.
Contour interval is 5.00 X 1073, (c) As in (a) except on day 20 and the maximum vector is of length 4.99 X 1072 (d) As in (b) except on

domomentum would not be quantitatively accurate. In-
deed, comparison between Fig. 7a and the pseudomo-
mentum density on the 336-K surface, shown in Fig.
8a, suggested that the double-peak structure in the zon-
ally averaged pseudomomentum seen in Fig. 4d or 5d
is primarily associated with the substantial meridional
displacements rather than any complicated structure of
a linear wave. Nevertheless, on the basis of Fig. 7a, the
interpretation of this part of the life cycle, as that of
upward and equatorward propagation of wave activity
along the tropopause, would seem justified. Wave prop-
agation ideas are not so clearly relevant to later stages,
however. The location of the largest fluxes in Fig. 4e
with the largest densities in Fig. 4f suggests that the

equatorward flux, at least, is mostly associated with ad-
vection of PV and pseudomomentum, corresponding to
the first term on the right-hand sides of (2.3a) and
(2.3b). Indeed, when the different contributions to the
total wave activity flux on day 22 on the 336-K surface
were examined, it turned out that the advective contri-
bution was about four times greater than the nonad-
vective contribution. It would therefore be incorrect to
associate the equatorward flux of wave activity, seen
in Figs. 4e and Se, for example, with wave propagation.
In horizontally propagating waves, one would expect
the nonadvective flux terms, particularly the second
terms on the right-hand sides of (2.3a) and (2.3b), to
be most important.
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FiG. 5. (Continued) day 20 and the contour interval is 5.00 X 1072, (e) As in (a) except on day 22 and the maximum vector length is 2.27
X 1072 (f) As in (b) except on day 22 and the contour interval is 0.100. (g) As in (a) except on day 23 and the maximum vector length is
2.77 X 1072 (h) As in (b) except on day 23 and the contour interval is 0.100.

While there is no advective contribution to the ver-
tical flux, it is clear that vertical fluxes cannot always
be associated with wave propagation. For example, the
downward flux on day 23 has already been noted in
Fig. 4g and is centered on about 30°N, as is a maximum
in wave activity. Examination of Figs. 7¢ and 8c, and
comparison with Fig. 4g, suggests that this flux is as-
sociated with the compact vortices that have formed
from rolled-up PV streamers and which are also ob-
served on isentropic surfaces lower than 336 K. The
lower-level upward flux is associated with the forma-
tion of a low-level cyclone, identified as a ‘‘frontal cy-
clone’’ by Thorncroft and Hoskins (1990). Both these

vertical fluxes are likely to be associated with vertical
interactions, within vortex structures in the first case,
or between vortices and surface temperature gradients
in the second. While such interactions are seen to give
a net vertical transport of wave activity, it would seem
difficult to argue that wave propagation is an appro-
priate description of the process.

b. Wave activity diagnostics for LC2

For the LC2 case we shall concentrate on results us-
ing Z2R as basic state. This is because most of the
important flow evolution in LC2 takes place poleward
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FiG. 6. Eliassen—Palm flux and potential temperature (contour interval 10 K; 300 K subtracted) for LC1 (a) on day 17, with maximum
vector 4.63 X 10'° and (b) on day 20, with maximum vector 1.86 X 10'.

of 45°N, where the conditions necessary for using Z2
as basic state are not satisfied. Figures 9a—j show the
zonally averaged, meridional-plane (latitude and po-
tential temperature) pseudomomentum flux and the
zonally averaged pseudomomentum density. referring
to basic state Z2R for days 15, 20, 24, 25, and 26. We
have marked the location of the tropopause as a bold
contour on top of the diagram for pseudomomentum
density in Fig. 9b. Day 15 is at a stage in the life cycle
L.C2 when the disturbance is still linear. However, at
this stage the pseudomomentum density pattern is dom-
inated by a contribution from the difference between
initial and basic states and the contribution from the
growing baroclinic wave is almost completely ob-
scured. The flux, on the other hand, is dominated by
the contribution from the growing baroclinic wave, and
there are small differences from the corresponding
stage of LC1 (Figs. 4a and 5a); for example, the fluxes
are tilted more poleward in LC2. The EP fluxes are
shown in Figs. 10a,b, for days 15 and 20, respectively.
Note the slight poleward turning of the arrows in Fig.
10a as compared to the LC1 case of Fig. 6a. This is
entirely consistent with THM’s results.

In Figs. 9d, 9f, 9h, and 9j, the pseudomomentum
density pictures, only contours below the dashed curve
should be considered since at upper levels at low lati-
tudes the signal remains dominated by the basic-state/
initial-state differences. Day 20 shows the upward
propagating stage of the life cycle and the stage at
which the pseudomomentum flux is at its maximum.
The flux in Fig. 9¢ should be compared to the flux in
Fig. 5c. A major difference is the substantial poleward
branch of the wave activity flux in LC2. Similarly, in
the wave activity density, A, it may be seen that wave
activity is now filling up the poleward half of the tro-

posphere. There is still wave activity propagating along
the tropopause but to a lesser extent than in LC1. Note
that the EP flux in Fig. 10b has broadened laterally from
day 15, but compared to Fig. 6b its horizontal com-
ponent is mostly pointing poleward, and the vertical
component drops off much faster with height than in
Fig. 6b.

Even though some decay has set in by day 21, the
life cycle is still quite active for several days. Figures
9e,f show pseudomomentum flux and density on day
24. Now, the maximum in pseudomomentum density
is located at 68°N and at 305 K, compared to the late
stages of LC1 when the maximum was at 20°N and 340
K. It is consistent with the notion of THM that the
higher-latitude region has filled with wave activity and
is therefore to some extent acting as a Rossby wave
reflector. It is striking that now the flux is mostly di-
rected downward from the upper-level nonlinear region
and its maximum amplitude is about half of what it was
on day 20. There is little equatorward (or poleward)
flux. Indeed, comparing Figs. 9f and 9h, there appears
to be some reduction in wave activity in the high-lati-
tude region. On days 25 and 26 (Figs. 9g and 9i) the
flux continues to show a complicated structure, mostly
directed upward and poleward, its absolute value re-
maining mostly the same through time. The distribution
of the corresponding pseudomomentum density (Figs.
%h and 9j) remains remarkably constant. All the above
are indicative of the idea raised by THM that, whereas
during the later stages of LC1 the upper subtropics acts
as an absorptive cavity that drains wave activity out of
the jet region, during the later stages of LC2 the wave
activity tends to be trapped in a far less absorptive cav-
ity. This is reflected in the quasi-steady coherent struc-
ture in LC2 below and slightly poleward of the jet. As
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(a)
RUN 1103.700 DAY
ERTEL POT VORT

(b)

RUN 1103.700 DAY
ERTEL POT VORT

RUN 1103.700 DAY
ERTEL POT VORT

FiG. 7. Potential vorticity in PV units (107% m? s~' K kg™') on the 336-K potential temperature
surface for LC1 (a) on day 20, contour interval is 0.4, (b) on day 22, and (c) on day 23. Both (b)
and (¢) have contour interval of 0.5. Latitudes of 30° and 60°N are shown as dashed contours.
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(a)
RUN 1103.700 DAY 20.00
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(b)
RUN 1103.700 DAY 22.00
pseudomomentum

(c)
RUN 1103.700 DAY 23.00
pseudomomentum

Fic. 8. (a) Wave activity density on the 336-K surface for LC1 referring to basic state Z1 on
day 20, contour interval is 0.1. (b) As in (a) except on day 22 and contour interval is 0.25. (c) As
in (b) except on day 23. Latitudes 30° and 60°N are shown as dashed contours.
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FIG. 9. (a) Zonally averaged wave activity flux for LC2 referring to basic-state Z2R on day 15. The maximum vector (indicated in the
lower-left corner) has magnitude of 1.55 X 107, (b) Zonally averaged wave activity density for LC2 referring to basic-state Z2R on day 15.
Contour interval is 2.50 X 1072 The heavy solid line indicates the location of the tropopause. () As in (a) except on day 20 and the maximum
vector is of length 3.31 X 1072 (d) As in (b) except on day 20 and the contour interval is 0.10. The heavy dashed line separates the region
where the wave activity arises from the disturbance (below) and the region where the wave activity arises from the basic state not being the
initial state. (¢) As in (a) except on day 24 and the maximum vector length is 1.51 X 1072 (f) As in (b) except on day 24 and the contour
interval is 0.250. (g) As in (a) except on day 25 and the maximum vector is of length 1.05 X 1072 (h) As in (b) except on day 25 and the
contour interval is 0.20. (i) As in (a) except on day 26 and the maximum vector length is 1.10 X 1072 (j) As in (h) except on day 26.

will be further discussed in section 6, there is little ev-
idence that the wave activity associated with this struc-
ture is being maintained against dissipation by wave
activity fluxes, at least not on the timescales considered
here. The structure is of sufficiently large scale that the
effects of small-scale dissipation are weak.

Since the maximum in pseudomomentum density is
on a lower isentropic level in this case for LC2 than it
was for LC1, we shall examine the fields at 312 K, on

a lower isentropic level than before. This isentropic
level can be thought of as depicting upper-level struc-
tures for areas at or poleward of 60°N. Figures 11a—d
show PV on the 312-K surface on days 20, 24, 25, and
26, respectively. The high-latitude vortices are strik-
ingly persistent in time, and it is their contribution that
tends to dominate the pseudomomentum. Pseudomo-
mentum density is shown in Figs. 12a—d, for days 20,
24, 25, and 26. Comparing Figs. 11a and 12a, note that
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FIG. 9. (Continued)

each vortex has a double structure in pseudomomentum
and that this is manifested in the zonally averaged pic-
ture in Fig. 9d. The pseudomomentum density shown
in Figs. 12a—d tends to follow the PV distribution.
Again, this is an indication that the pseudomomentum
at the mature stage in the life cycle is associated with
advection of PV, corresponding to the first term in
(2.3a) and (2.3b), and not to wave propagation, that
is, the second term in (2.3a) and (2.3b).

5. Results for the modified LC1 and LC2 life cycles

Here we examine life cycles that were run in exactly
the same way as LC1 and LC2 except that we used
Z1R and Z2R as initial states instead of Z1 and Z2,

which are the initial states for the true LC1 and LC2.
We shall call these modified life cycles LCIR and
LC2R, respectively. Thus, the main difference between
the initial states for LC1 and LC1R (and between LC2
and LC2R) is that the zonally symmetric PV has been
rearranged for the latter—under constraints of PV and
mass conservation—such that the latitudinal gradient
of PV is not negative. We find that the resulting life
cycles show the same type of behavior as the original
ones, only somewhat less exaggerated. Thus there is no
evidence that the interior reversals of PV on isentropic
surfaces in the initial states of LC1 and LC2 were par-
ticularly important for unstable growth. The upper-
level vortices of LC1R’s mature phase turn out to be
more vigorous than those at the same stage of LCI.



15 AuGusT 1996

@)
0o I T T T T T T T
.............................. e
3sef 4
............................. R
gk e e R P B
............................ LI
AN i Srppatt T TR R R R R R R TR TR R TR B
334; ........................... \\T//M,‘“\\ ........................... ]

o T s W22, e

[=9

T S PR FTTIN NIEZI2 (v |

(=}

N SRR R RE TR T e R PR PRRR R ETIN \’/‘/Y/"/_“\“\”” .......................
S22 Y77/
B R ERTEERERPLRPERELACN \\‘//mfl“////—'eb.,»».__m..A.,.“..,,._

........................... N/ /2
EL S OO .\\\//‘f/m/rf”//‘///"%._._,. ............. B
................. \\:/y..n.\.,,///__,;/f/‘/‘””f///'ﬂ,___..»..,.....,,
fm X
..... —— u/,,//m.,w\\J//fﬂ (T
1 1 L 1 1. Il 1 Il
0 10 20 30 49 50 68 78 8o,
Latitude s
@
3ogp- - — T T T T T T -
354
347 P E
Vs
347 4
334 -

i

‘a

o

5 328 i

a

ki
322 ‘
315 -
3E9 |
302 4
29g I L 1 ) Il i L

2 12 290 30 40 14 60 70 8e 99

Latitude
[coNTOUR FROM © 70 38 BY 2 (X 1)

FI1G. 9. (Continued)

LC2R turns out to be less active than LC2 in that the
disturbance is both shallower and more confined to
high latitudes than LC2.

a. Wave activity diagnostics for LCIR

We are particularly interested in examining differ-
ences between LC1R and LC1. We shall therefore con-
centrate on the same stages of development as we con-
sidered for LC1. In the case of LCIR it appears that
these stages occur on days 17, 19, 21, and 22, that is,
a day earlier than for LC1 everywhere except for the
initial, linear stage. Examination of the zonally aver-
aged pseudomomentum flux and density on those days
corresponding to Figs. 4 and 5 shows structure in

MAGNUSDOTTIR AND HAYNES
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LCIR’s linear stage that is considerably noisier than
LC1’s linear stage. The PV rearrangement seems to
introduce small-scale structure into the basic state
around the tropopause level in midlatitudes on the
lower and southern fringe of the jet maximum. Ex-
pressions of this structure can be seen in Fig. 3c, in the
steepness of the 325 K isentrope just below the jet. The
small-scale structure becomes less important as devel-
opment takes place. As for LC1 the wave activity flux
and density plots show that in the growing linear mode
there is some propagation, albeit relatively weak, along
the tropopause. Eliassen—Palm fluxes at this stage are
very similar to those for LC1.

The upward propagating stage of LCIR on day 19
is very similar to the corresponding LC1 stage, shown
in Figs. 4 and 5c,d. Similarly, the EP fluxes for LC1R
are almost the same in magnitude and direction as in
Fig. 6b. By day 21 we have reached the mature stage
of LC1R. The flux, shown in Fig. 13a, is pointing more
upward than either in Figs. 4e or 5e, depicting the cor-
responding mature-stage flux of LC1. Also, its mag-
nitude is greater. Day 21.3 of LC1R and day 22 of LC1
are probably more exactly comparable. Note that LC1R
shows the same equatorward excursion of wave activity
as LC1. The following day the wave activity flux in
Fig. 13c is mostly horizontal at upper levels, with a
strong equatorward signal toward 20°N. Figure 13d
shows the corresponding pseudomomentum density
picture. An interesting difference here compared to the
LC1 case in Figs. 4f and 5f is that LC1R seems to be
active farther poleward than LCI1 at this late stage.
There is a sharp edge to the wave activity density pic-
ture in Fig. 5h at about 50°N, whereas this edge in Fig.
13d is at about 60°N. This farther poleward extent of
LCIR can also be seen on the following day (not
shown in Fig. 13) so that it does not appear to be as-
sociated with the possible time shift of evolution of
LCIR compared to LC1.

Looking at PV on the 336-K isentropic surface, we
again see the large lateral excursions of PV that char-
acterized LC1. Figure 14a shows PV on day 19 and
should be compared to Fig. 7a. This picture further con-
firms that indeed we are looking at the upward propa-
gating phase of the life cycle since it shows that PV
contours are undulating reversibly. By day 21 shown
in Fig. 14b, we have tongues of high-PV air reaching
into low latitudes. Comparing this figure with Fig. 7b
shows that the high-PV tongues are broader and there-
fore take up more area in LC1R than at the correspond-
ing time in LC1. This is further substantiated by the
field in Fig. 14c that shows that the tongues have rolled
up into intense vortices on day 22, more intense than
at the corresponding time for LC1 shown in Fig. 7c.
This difference between LC1 and LCIR is also re-
flected in the area-average eddy kinetic energy field as
will be discussed in section 6.

The pseudomomentum density on 336 K corresponds
clearly to features in the PV distribution, as can be seen
in Figs. 15a—c, for days 19, 21, and 22. Comparing Figs.
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F1G. 10. EP flux and potential temperature (contour interval 10 K, with 300 K subtracted) for LC2 (a) on day 15 with maximum vector of
2.06 X 10" and (b) on day 20 with maximum vector of 1.39 X 10,

15a and 8a, we see that the pseudomomentum distribu-
tion for LC1R at the upward propagating stage takes up
less area and has a higher amplitude than that for LC1
at the corresponding time. The location of the maximum
wave activity density corresponds to the location of the
tropopause where there are concentrated PV gradients
on each isentropic surface intersecting it. Again, there is
reason to believe that the final stage of equatorward dis-
placement of wave activity is associated with nonlinear
advection of potential vorticity anomalies rather than
with wave propagation.

b. Wave activity diagnostics for LC2R

The linear stage of LC2R’s zonally averaged wave
activity flux is very similar to the linear stage of LC2’s
zonally averaged wave activity flux shown in Fig. 9a.
The corresponding zonally averaged wave activity den-
sity for LC2R does not have the anomalous maximum
at low-latitude upper levels in LC2, which arises solely
from the differences between the basic and initial
states. However, for LC2R as for LC1R, there is some
small-scale structure in the wave activity density of the
linear stage concentrated at tropopause level. Eliassen—
Palm fluxes at this stage are very similar to those for
LC2 (Fig. 10a) except that the location of the maxi-
mum upward flux is shifted by about 5° latitude pole-
ward.

The zonally averaged wave activity flux and density
for the upward propagating stage are very similar to the
corresponding stage for LC2, shown in Figs. 9¢,d. The
exception is that in the LC2R case the basic state is the
initial state so that there is no anomalous maximum in
the density at low-latitude upper levels, as can be seen
in Fig. 16a. Also the wave activity in Fig. 16a is more

latitudinally confined than for the LC2 case in Fig. 9d.
The EP fluxes for LC2R’s upward propagating stage
are very similar to those for the corresponding stage of
LC2 shown in Fig. 10b.

At the mature stage, LC2R is again similar to LC2
in Figs. 9e.f. The zonally averaged wave-activity den-
sity is shown in Fig. 16b. Note that the magnitudes are
considerably lower for LC2R than for LC2. Notice the
upper-level, low-latitude bubble of wave activity that
appears in Fig. 16b. This is indicative of some wave
activity propagating through to low latitudes, an effect
that is also detected for LC2 if Z2 is used as the basic
state, which is possible in this low-latitude region.
When LC2 is referred to basic-state Z2R, the signal in
this region is dominated by basic-state/initial-state dif-
ferences.

Figures 17a,b show PV on the 312-K isentropic sur-
face for LC2R and should be compared to Figs. 11a,b,
showing the same field for the same stages for LC2.
Note that the rolled-up vortices are located farther pole-
ward for LC2R than for LC2. Again, when later times
were examined, the persistence of the vortices with
time is striking. The pseudomomentum density on the
same isentropic surface for the same times is shown in
Figs. 18a,b. Compared to the LC2 case shown in Figs.
12a,b, the wave activity density is both latitudinally
more confined and has lower values than for LC2.
Again, the wave activity fields follow the PV distri-
bution, explaining the double-peaked maxima in the
cross sections.

6. Global diagnostics and comparisons

In order to improve in simple quantitative measure
of the difference between the four life cycles, it is use-
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Fic. 13. (a) Zonally averaged wave activity flux for LC1R referring to basic-state ZIR on day 21. The maximum vector (indicated in the
lower-left corner) has magnitude of 3.76 X 1072 (b) Zonally averaged wave activity density for LCIR referring to basic-state ZIR on day 21.
Contour interval is 0.10. (c) Same as (a) except on day 22 and the maximum vector length is 4.48 X 1072 (d) Same as (b) except on day 22.

ful to consider global diagnostics. Figure 19a shows
the time evolution of the area-averaged eddy kinetic
energy (EKE) for the four life cycles. The growing
phase of the life cycle is similar in all four cases in that
the slope of the curve of rising EKE is about the same.
There is a time shift that presumably arises because the
initial disturbance, which is not itself a normal mode,
projects differently onto the relevant normal mode in
each case. Probably the most striking difference be-
tween the four cases is the rapid and substantial drop
in EKE for LC1 early in the decay phase, which is not
seen so strongly for the other three life cycles. LCIR,
LC2, and LC2R all have similar values of EKE on day

28, at about 7 X 10° J m~2. LC1 on the other hand has
an EKE value of about 5 X 10°J m™2 at the same time.
If the only diagnostic considered was EKE, one would
be tempted to conclude that LC1R, LC2, and LC2R are
all similar, with only LC1 showing different behavior.
Of course, the wave activity diagnostics show this not
to be the case. In particular the apparent similarity be-
tween the EKE signatures of LC1R and LC2R is con-
trasted by the wave activity signatures clearly showing
them to be of LC1 and LC2 type, respectively.

Figure 19b shows the area-integrated vertical wave-
activity flux through 304 K as a function of time. Here
304 K is an isentropic surface that remains above the
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FiG. 14. Potential vorticity in PV units on the 336-K potential temperature surface for LC1IR
(a) on day 19, with a contour interval of 0.4 and (b) on day 21 and (c) on day 22, both with
contour intervals of 0.5. Latitude of 30° and 60°N are shown as dashed contours.
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(a)

RUN 25.700 DAY
pseudomomentum

(b)
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(c)

RUN 25.700 DAY
pseudomomentum

FIG. 15. (a) Wave activity density on the 336-K surface for LC1R referring to basic-state Z1R
on day 19. Contour interval is 0.10. (b) Same as (a) except on day 21 and contour interval is 0.25.
(c) Same as (b) except on day 22. Latitudes of 30° and 60°N are shown as dashed contours.
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FiG. 16. (a) Zonally averaged wave activity density for LC2R referring to basic-state Z2R on day 18. Contour interval is 0.1.
(b) Same as (a) except on day 23.

earth’s surface at all times for the four life cycles. Both
LC2 and LC2R organize themselves earlier than LC1
and LCIR, as seen in Fig. 19b. Notice that the late
stages of both LC2 and LC2R show fluctuations be-
tween positive and negative values of the total vertical
flux with a period of about 3 days. At the end of the
simulation, LC1R has a negative vertical wave activity
flux that is about 30% in magnitude of the maximum
vertical flux on day 20, whereas LC1’s vertical flux is
only slightly negative at the end of the simulation. This
could be interpreted as a sign of the more effective
absorption of wave activity in LC1 than in the other
life cycles.

Figure 19c shows the cumulative (in time) vertical
wave activity flux. LC2R has the lowest values for the
mature phase consistent with it being the most latitudi-
nally and vertically confined of all the life cycles, as was
seen in Figs. 16—18. LC1R shows the largest cumulative
value on day 26, after which it starts dropping off be-
cause of the negative vertical flux at late stages. Both
LC2 and LC2R show a remarkably constant cumulative
vertical flux after the initial increase up to day 22.

Figures 19b,c suggest that in later stages of LC2 and
LC2R vertical fluxes are insignificant. Further calcu-
lations lead to similar conclusions regarding fluxes
across control surfaces closer to the lower boundary.
Therefore there seems to be no evidence that the co-
herent vortices seen in the later stages of LC2 and
LC2R exchange wave activity to any great extent with
the boundary, nor are they maintained against dissi-
pation by a wave activity flux out of the boundary. This
confirms the existence of a mid- and high-latitude
Rossby wave cavity suggested by THM.

The vertical wave activity flux may be expressed in
terms of Eulerian variables, whether or not the basic
state has monotonic PV gradients. Furthermore, the
vertical flux of wave activity is independent of zonally
symmetric changes to the basic state. One could there-
fore use the initial states,.Z1 and Z2 or equivalently
Z1R and Z2R, as basic states for both LC1 and LC2
over the whole domain. However for computing wave
activity density, only Z1R and Z2R are acceptable, as
Z1 and Z2 both have negative PV gradients in the in-
terior. Figure 19d shows the total integrated wave ac-
tivity over the hemisphere and 304-356 K in the ver-
tical. The vertical extent is the same as that shown in
the cross sections, except that the lowest layer is omit-
ted, since at certain stages of some of the life cycles
the 300-K isentrope was found to dip underground. We
adjusted for the fact that the basic states are not the
initial states for LC1 and LC2 by subtracting the value
on day 13 from the values on the following days. The
nonadjusted values of wave activity on days 8—13 were
less than 0.01% of the maximum values for both LC1
and LC2. If wave activity were exactly conserved, then
one would expect the cumulative vertical flux through
304 K on a particular day (Fig. 19¢) to agree with the
total wave activity above that level on the same day
(Fig. 19d). Comparing 19c,d, we see that in most cases
the total wave activity is slightly less than the cumu-
lative vertical flux, consistent with the fact that the sim-
ulation is not entirely dissipationless; a V¢ hyperdif-
fusion is included to limit the growth of small scales.
Note in particular that this difference between the ver-
tical flux and the wave activity is greater for the LC1-
type life cycles, consistent with the more effective scale
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FiG. 17. Potential vorticity on the 312-K isentropic surface for LC2R (a) on day 18 and (b) on
day 23. Contour interval in both cases is 0.25 PV units. Latitudes 30° and 60°N are shown as
dashed contours.

cascade and therefore more dissipation in those life cy-
cles.

In Fig. 19e we confine the calculation of wave activ-
ity to the area equatorward of 45°N. For L.C1 and LC2
we can thus use the initial states, Z1 and Z2, respec-
tively, as basic states. This figure serves two purposes.
First, it allows comparison of the amount of wave ac-
tivity that has accumulated in lower latitudes for the
LCl-type life cycles as compared to the LC2 types.
Second, it serves to compare results for LC1/LC2 ob-
tained using the initial state as basic state to results
obtained using the rearranged state as basic state. The
area equatorward of 45°N is the area where the LC1-
type life cycles are particularly active in the decay
phase at upper level. This is reflected in Fig. 19¢. Com-
paring it to Fig. 19c, we see that 81% of the total wave

activity of LC1 as measured in Fig. 19¢ is equatorward
of 45°N on day 23 when the wave activity is at a max-
imum. When the wave activity of LC1IR is at a maxi-
mum on day 22, 74% of the total wave activity is equa-
torward of 45°N. This is consistent with the more ef-
fective equatorward wave breaking in LCl as
compared to LCIR and also with the lack of a sharp
decrease in EKE for LC1R. For the LC2-type life cy-
cles the picture is completely different. When the wave
activity of LC2 is at a maximum on day 23, only 45%
of it is equatorward of 45°N. For LC2R the percentage
is even smaller, 33% of the total wave activity on day
22 is equatorward of 45°N. According to Fig. 19e, us-
ing ZIR and Z2R as basic states for LC1 and LC2,
respectively, tends to overestimate the wave activity by
a relatively constant value.
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Fic. 18. (a) Wave activity density on the 312-K surface for LC2R referring to basic-state Z2R
on day 18. Contour interval is 0.2. (b) Same as (a) except on day 23. Latitudes of 30° and 60°N

are shown as dashed contours.

Figure 19f shows the time evolution of that propor-
tion of the total wave activity (equator to pole) that is
equatorward of 45°N for LCIR and LC2R. In the nor-
mal-mode growth stage, there is not, by this measure,
much difference between LC1R and LC2R. The strik-
ing difference is seen in the nonlinear stage. Interest-
ingly, as both LC1R and LC2R approach the nonlinear
stage, they show a decrease in the ‘‘low latitude’’ pro-
portion of wave activity, with LC2R dropping off ear-
lier than LC1R. (Note, e.g., from Fig. 19d that the non-
linear stage is expected to be about two days earlier for
LC2R than LCIR.) This corresponds to there being
more rapid increase in wave activity poleward of 45°N
than equatorward at about the time when there is low-
level saturation in wave activity. For LC2R the equa-
torward proportion stays fairly constant at later times,

but LC1R shows a substantial increase to a secondary
maximum at day 22 as the disturbance saturates at low
latitudes. This equatorward shift in the wave activity
is, of course, expected from the flux patterns shown in
Figs. 13a and 13c. Figure 19f is consistent with both
Figs. 19d,e and perhaps gives an even clearer picture
of the difference between LC1- and LC2-type cyclones.

Finally, we consider global diagnostics including the
lower boundary, wave activity terms discussed in section
2 and calculated using the approach described there. To
show the typical #-latitude configuration of the zonally
averaged interior and boundary wave activities, each of
the volume integral terms in (2.16) may be considered
as the integral of a wave activity density over the whole
#-latitude plane. Such a density is identically zero at val-
ues of # and latitude for which there are no points, at
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FiG. 19. (a) Area-averaged, eddy kinetic energy for the four life cycles as a function of time (in days). LC1 and LC2 are the
full curves, LCIR the dashed curve, and LC2R the dashed-dotted curve. (b) Wave activity flux through the 304-K surface.
LC2 and LC2R are the full curves, LC1 is dashed, and LC1R is dashed-dotted. (¢c) Cumulative (in time) vertical wave activity
flux through 304 K as a function of time. The different life cycles are represented as before. (d) Total wave activity over the
hemisphere and from 304 to 356 K. (¢) Wave activity equatorward of 45°N and from 304 to 356 K. The different life cycles
are represented as before. Additionally, LC1 referring to basic-state Z1 and L.C2 referring to basic-state Z2 are represented by
dashed curves. (f) Proportion of wave activity, integrated over levels 304—356 K, equatorward of 45°N. LCIR is indicated by
the dashed—dotted curve, and LC2R is indicated by the full curve.
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any value of longitude, inside the region of integration
concerned. Figure 20a is a §-latitude cross section show-
ing the interior wave activity density, that is, that giving
rise to the first term in (2.16), and the boundary wave
activity density, that is, that giving rise to the last three
terms in (2.16). No account can be taken here of the
boundary integral, the second term, because this is not
a volume integral of a density. This term, however, has
been included in the integrated boundary calculations
(Figs. 20b,c), though in practice this term turns out to
be only a small contribution to the total.

Figures 20b,c show the time evolution of the inte-
grated interior and boundary wave activity for LC1R
and LC2R, respectively. The integrated interior wave
activity is the first term in (2.16) and minus the inte-
grated boundary wave activity is minus the remaining
terms in (2.16). The interior term is shown by the solid
curve, and the boundary term by the dashed curve. In
a conservative flow these two curves should match. We
see here that for LC1R (Fig. 20b) they begin to diverge
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FiG. 20. (a) Zonally averaged interior and boundary wave
activity density for LC1R on day 21. The interior contribution
is indicated by the solid curves, the negative boundary con-
tribution is indicated by the dashed curves, and the positive
boundary contribution is indicated by the dotted curves. Con-
tour interval is 0.2. (b) Total integrated interior (solid curves)
and minus the boundary (dashed curves) wave activity' for
LCI1R as a function of time. (¢) Same as (b) except for LC2R.

substantially at about day 18 and for LC2R (Fig. 20c)
at about day 16. Investigation of the low-level temper-
ature field in the model simulation shows that at such
times it is beginning to become substantially distorted.
This is entirely consistent with the idea that frontoge-
netic processes are strongest at low levels. (Note, e.g.,
the surface temperature distribution on day 5 of LC1
shown in Fig. 5 of THM, or day 6 of LC2 in Fig. 8,
both considerably preceding the maximum in EKE.) It
is therefore to be expected that small-scale dissipative
processes are playing an important role at that stage. In
other words, in the upward propagation stage of both
life cycles the wave activity flux out of low levels is
being balanced at low levels not by further growth of
(negative) wave activity, but by dissipation of (nega-
tive) wave activity.

7. Concluding remarks

In this work we have demonstrated how the dif-
ferences between baroclinic wave life cycles may be
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quantified using finite-amplitude, wave activity di-
agnostics. Such diagnostics are conceptually attrac-
tive because of their clear theoretical significance,
but there are a number of aspects of their application
that require care. In particular, the basic-state flow
must satisfy PV monotonicity requirements. We have
shown that even if the initial state does not satisfy
such requirements, it may be possible to find other
basic states that are sufficiently close to the initial
state that the contribution to the wave activity from
the growing disturbances dominates that from the ba-
sic-state/initial-state difference. Thus the wave ac-
tivity diagnostics allow insight into the growth and
saturation of the disturbances.

Potential vorticity rearrangement is an attractive
method for defining new basic states with the required
monotonicity properties, but, at least when used in con-
junction with sigma coordinate models, it needs to be
combined with a heuristic approach.

The nonmonotonicity of the THM basic states raised
the question of the dynamical significance of such re-
versals in potential vorticity gradients. Numerical ex-
periments with adjusted initial states show that the lin-
early growing modes clearly have the same baroclinic
character whether or not the reversals are present and
furthermore that the reversals are not an important part
of the maintenance of the LC1/LC2 distinction. Nev-
ertheless, there were important differences between the
simulations in the original and adjusted states, partic-
ularly for LC1-type simulations, where the EKE sig-
natures were very different. The EKE signature for the
LCIR simulation was actually closer to those for the
LC2 and LC2R simulations than to that for the LC1
simulation. Nonetheless, the upper-level potential vor-
ticity structure and the latitudinal distribution of wave
activity for LCIR were clearly of LC1 type. This is a
reminder of the pitfalls in trying to characterize flows
by a single type of diagnostic.

New insight was obtained into the late stages of evo-
lution of all four life cycles. We found that during the
late stages the propagation of wave activity to low lat-
itudes is primarily associated with advection of wave
activity and not wave propagation.

The sensitivity in the evolution to relatively small
changes in the initial state also warns against too much
emphasis on LC1 and L.C2 as distinct types into which
all nonlinear baroclinic life cycles must fall. Simula-
tions not reported here seem to fall in the middie
ground between LC1 and LC2. Instead, it seems best
to regard LC1 and LC2 as useful paradigms against
which different life cycle simulations may be mea-
sured.
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APPENDIX A
Inverting the Balanced Zonal Flow

The equations for adiabatic, inviscid, zonally sym-
metric, balanced flow on the sphere can be written

Du _ (29 sin¢+utan¢>v=0, (A1)
Dt a
(29 sing + — tan¢>u LMo (A2
a ad¢
oM
55 =1L (A.3)
Do O(vcosg) 0, (A4)

Dt oacosdw o

where 6, the potential temperature, is the vertical co-
ordinate; D/Dt = 8/0t + vO/ad¢ the total derivative;
u and v the zonal and meridional components of the
wind; IT = ¢,(p/p,)" the Exner function; M = 0I1 + gz
the Montgomery potential; and o = —9p/90 the pseu-
dodensity.

The vorticity equation is derived by taking — & cos ¢/
a cos¢ ¢ of (A.1) to get

D¢ (v cosgp)
Dt * Cacosdu?qb -

where { = 20 sing — 9(u cosd)/a cosdpde is the
absolute vorticity in isentropic coordinates. Eliminating
divergence between (A.4) and (A.5), we obtain

DP
ZT o, A6
Dt (A-6)

0, (AS5)

where P is the potential vorticity, P = {/o. Here P is
the quantity we will want to invert to obtain the wind
and temperature field. Using the hydrostatic equation
to express ¢ in terms of M, we can write the definition
of potential vorticity along with the equation for the
gradient wind balance [(A.2)] as a coupled set of two
partial differential equations:

Ou(l — > PO*M
2 _ — = i
u adu T oe2 -0 (A7)
u oM
<ZQ'LL+—a(1 _MN2)1/2>M+(1 _/.Lz)”zE:O:

(A.7b)
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wher(? u=sing and I' = dT1/dp. The two differential
equations allow us to compute u and M given P along
with the boundary conditions:

u=0 at pu=1, (A.7¢)
U= uq(d) at p=0, (A.7d)
oM
0 =I1(u) at 6 =6, (A.7e)
oM
M—-0—-= = .
0 20 0 at 6 =86, (A7)

where u.,(#) signifies the wind at the equator, which
is specified, and ¢, and 6; are the top and bottom is-
entropes, respectively. The pressure is specified at the
top so that IT;(u) is known. At the bottom we assume
that there is no topography such that z = 0.

Let us define a nondimensional vertical coordinate
z, such that z = HIn(8/6p), where H = (In(8:/65)) 7",
and let us nondimensionalize M by ¢ = aR (87 — )\,
P by 2Q/o,, T by I', = R\/pg, 1 by I1y = ¢,\, p by
P, and u by 2Qa. Then (A.7) becomes

E - 2\ 1/2 _ _ 28_u
P[ (I =p) " +up—(1 u)au

o*M oM
+ 1_ 23172 HZ______ Rt zH _.2=
( k) [ Py Haz](ﬂe ) 0,
(A.7a")
(1 = )" + upyu +l(1 - ﬂz)-a—ﬂz =0,
€ Ou

(A.7b")
u=0 at pu=1, (A.7¢")
U= Ueq(z) at p=0, (A.7d")

oM
Kax 55 = Ié{e””ﬂr(u) at z=1, (A7e)
M- _o a ;-0 (A7)

0z

where T = "Y', o = (pg — pr)/Pa, N = (Ps/
p)*, p, = 1000 hPa, R = 287 J kg ' K™}, 0, = (p3
= Pr)/(8r — 8s), € = 4Q%a%/c?, B = 05/(87 — 05),
and u.q has been scaled by 2€la. All of (A.7') con-
stitutes what has been called the invertibility princi-
ple (Hoskins et al. 1985). Given a potential vorticity
distribution on the hemisphere along with wind at the
equator and pressure at top, we can compute the wind
and pressure on the hemisphere corresponding to that
potential vorticity distribution. The way (A.7f") is
written one would think that we are restricted to con-
stant potential temperature at the ground. This is not
the case. Given the potential temperature at the
ground, one simply extends the domain vertically to
include parts that are below ground, the so-called
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massless layer [see Andrews (1983) for a theoretical
discussion and Fulton and Schubert (1991) for ap-
plications}. The bottom of the domain, 8, then cor-
responds to the highest isentrope that remains below
the earth’s surface everywhere. We assume that is-
entropes that intersect the ground continue just under
the ground with pressure and geopotential equal to
their surface values. Thus there is no mass trapped
between isentropes that are underground, and o = 0
in the massless layer making o discontinuous across
the ground. The Montgomery potential, M, remains
continuous across the ground, varying linearly in 6
in the massless layer. Thus the hydrostatic equation
(A.3) holds in the massless layer (6 < 84.). We de-
fine u for § < 8. by (A.2) such that the positive root
is taken. Similarly, we define v for # < 8 such that
(A.1) holds. Since the governing equations and def-
initions all apply unchanged in the massless layer,
the derivation of the invertibility relation goes
through in the same way as before and (A.7a’-f")
are valid for the extended region. Note that since o
= 0 for # < 8 while { remains finite, P — « when
f < By.. Also note that in the massless layer, I' is
equal to its surface value. When solving (A.7"), we
assume that I'/P = 0 when 8 < ..

Numerical method for solving the invertibility
relation

To solve the discretized version of (A.7a’-f "), we
use an iterative method similar to the one used by Schu-
bert et al. (1991) based on Newton’s method and line
relaxation.

Consider the grid defined by p; = jApu, where j = 0,
1, ---, Jand Ap = 1/J, and by z, = kAz, where k
=-1,0,1, -, K+ 1and Az = 1/K. Defining M at
odd j points, u at even j points, and demanding that J
always be even ensures that j = 0 and j = J are u points
where the boundary conditions (A.7¢’—d’) are im-
posed. We define

Alj,k’
Xjk =
uj,k9

and use centered differences to discretize (A.7a’) at
the M points and (A.7b’) at the u points. Then the
discretized form of (A.7a’-b’) is

if j odd
. (A8)
if j even,

Fiy =0, (A.9a)
where
Fi=20p(1 — ”1‘2)1/2H2(xj,k+1 — 2X;% + Xjpe1)

— Ap(l — p)'"PHAZ(Xj401 — Xjp1)
T.
" I-’+k (Be™™)?(A2)*{ i AR(X 414 + Xj-14)
Jk
- (1- /'Lj2)(xj+1_k = Xi—ix) + 2 Ap(l — ”12)1/2},
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for j odd,
Fj = zeﬂjAﬂ((l - ,Ujg)llz + Xiu) X

+ (1 - ,u'j?)(xj+l,k = Xj_14)»

for j even. The boundary conditions are

2A
Xike1 = Xjg-1 2828 e'Mp%, forjodd (A.9b)
2A
xj"..i = -xj,l - —I}'Z'xj',o, fOI‘j odd (A9C)
xO,k = ueqky (A9d)
X0 = 0. (A.9¢)
The interior equations are applied forj =1, ---, J — 1
and k = 0, -- -, K. We use ghost points to satisfy the

boundary conditions at top and bottom. The boundary
conditions are updated after a sweep of the entire grid.
Also updated at that time is I';, = IT{5""/~, where IT;,
= KaH(ﬂezkIH)—l(le.kﬂ = M)/ (2Az).

For the results of this paper, 6, was chosen at 550
K, and 85 was the same for both Z1 and Z2 or 253 K.
We used J = 80 and K = 122. As an initial guess, we
used a zero wind field and we integrated the horizon-
tally averaged pressure (on each isentropic level) of Z1
and Z2 in the vertical to obtain an initial M field for
each case, that is, for inverting the PV of Z1R and Z2R,
respectively. The value of pp is the horizontally aver-
aged pressure on the lowest isentropic surface (8;) of
Z1 or Z2, and pr is the horizontally averaged pressure
on 8y 0f Z1 or Z2. Even at 550 K, the top of our inverter
turned out to be below the highest sigma level in the
model. To get a velocity on the highest sigma level, we
simply extrapolated linearly from the value on 8,
smoothing the highest values at the same time.

Suppose we have an estimate of x along a line of
interior points j = 1, ---, J — 1 and along lines of
surrounding points, above and below, but that this es-
timate does not satisfy (A.9a). Holding the values
along the surrounding lines fixed, we update the entire
line simultaneously so that its values satisfy (A.9a).
Then we have J — 1 equations—the even-labeled ones
are nonlinear—that can be written in vector form as
F(x) = 0, where x is a vector consisting of the J — 1
values along the line (with k fixed). Then Newton’s
method can be written as

J(x™ — xM) + F(x) =0, (A.10)
where J is the tridiagonal Jacobian matrix of the sys-
tem. We use zebra relaxation to update x by (A.10).
First, we simultaneously update the lines corresponding
to k even, overwriting old values of the unknowns.
Then, we simultaneously update the lines correspond-
ing to k odd using the new values of the unknowns on
neighboring lines. Having thus updated all interior
points, we then update the ghost points by (A.9b,c).
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APPENDIX B

Rearrangement of Zonally Symmetric
Potential Vorticity

The aim is to monotonize the distribution of PV in
latitude such that the largest value of PV is at the pole,
with decreasing values as we go toward lower latitudes.

a. Rearranging PV by area

Consider the grid (j, k) defined in appendix A,
equally spaced in sin¢ in the horizontal and log# in the
vertical. Let us consider a particular isentropic surface,
say z; = kAz. Now PV is defined on the odd j points,
so we define area elements a;; (jj = 1,2, ---, J/2)
corresponding to those points starting from the equator;
a, = sing,, a, = sing, — singg, a; = sings — sing,
all the way to the point next to the pole where a;,, = 1
— sin¢g;_,. Note that the total area of the hemisphere
has been normalized to 1. We now use a sorting routine
to reorder the P;;’s such that the largest value is at jj
= J/2, that is, at the point closest to the pole, etc., so
that we arrive at a distribution of PV, P*, that does not
have a reversal in the latitudinal gradient of PV. Cor-
responding to shifting the position of P;;, the position
of a;; is shifted accordingly. Hence we obtain a function
A(P*) that represents the total area on that particular
isentropic surface taken up by fluid elements that have
PV = P*. [See Butchart and Remsberg (1986) for a
more detailed discussion.] Corresponding to each value
of the function A (P*), there is a value of an equivalent
latitude since the normalized area of the polar cap to
latitude ¢, is A = 1 — sing,,. Thus we have a one-to-
one correspondence of PV and latitude (¢.,). The final
step is then to interpolate this new PV distribution back
to the original grid that is equally spaced in sin¢.

b. Rearranging PV by mass

Again, we fix the isentropic surface to k. In this case
we consider elements of mass m; (jj = 1, 2, - -,
J/2) to be reordered with the P;;s rather than elements
of area a;;. In a similar manner to the above, we build
a function M (P *) that ideally should represent the nor-
malized mass of the polar cap shell enclosed by PV
= P* and lying between k — 1/ and k& + 1/ in the
vertical, where the mass is normalized by the total pole
to equator mass. We would then know our reordered
PV field (P*) at the latitudes ®}f where

Ji ©)
S o af

. * _ i=]
1 —sin®; = 55—,

and where a; indicates area elements that have been
reordered to correspond to the reordering of P;. To
get the PV field at our original grid, we would simply
interpolate to the latitudes defined by
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E (" 1) :
=1

1 - singy” ==
2 o Vg,

i=1

However, we do not know the pseudodensity before
the inversion so, as we iterate toward the correct pseu-
dodensity field, progressing toward a solution, we also
update the interpolation of the P * field to the grid. We
used the pseudodensity field correspondmg to the orig-
inal PV field as our first guess, o”. For the results
of this paper we iterated five times on the ¢ field (n

=5).

APPENDIX C

Comparison with Linearized Wave Activity
Conservation Relations

A linearized form of the Eliassen—Palm relation in
isentropic coordinates is given by Andrews (1987) and
may be shown to be equivalent to the small-amplitude
limit of the finite-amplitude pseudomomentum conser-
vation relation of H88 if basic-state quantities in the
latter are replaced by zonally averaged quantities. The
linearized form given by Andrews (1987) is

OA 1 @ AF®

—_— [ (¢) —

o + 7 cosh 06 (cosd;F ) + 2 0, (C.1)
where

A=a cos¢(% ac3P2/Pys — ﬁ) (C.2a)

F@ = (C.2b)

—ao v, CoOS
and

FO =g~ 'p.M,. (C.2¢)

The (-) denotes a zonal average, but we retain the (-),
and (), notation for consistency with the rest of the
paper. We consider a domain as in section 2, where v
= () at lateral boundaries, for example at ¢ = *7/2,
and the fluid domain is unbounded above. The lower
boundary on the other hand is defined by the curve 6
= 6,(\, ¢). Then integrating over the domain, and not-
ing that changes in the extent of the fluid domain may
be neglected at leading order, it follows that

d J‘ N
— ] A do
dt o a cospde

= f F®q cosdpdd — F® cospdd. (C.3)
v ooy

We now assume that the flux components £¢¢) and £®
vanish on all but the bottom boundary. The aim is to
write the integral over the bottom boundary as the rate
of change of a quantity integrated over that boundary.
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It is useful to define the geometric height on the
lower boundary in the basic state as z = z,0(¢). If the
lower boundary distribution of 8 in the basic state is
given by 8,,(¢), then it must be the case that zo(¢,
Br0(d)) = z,0(¢) and hence that zoy + 504200 — Zog
= 0. It follows that

9b0¢> = (Zpop — Zos)! Z00- (C.da)
Similarly, since z(\, ¢y, 8) = 7, (s, 8), it follows that

Ze = ¢be(zb0¢ - Zo¢)- (C.4b)

Transforming the right-hand side of (C.3) to an integral
over ¢ using (C.4b) gives

d J‘ .
dtda Aa cosddpdo
(Zb0¢ - Zo¢)}

= J. {g_lpeMeA + O'()E_U-e COS(;b
209

X a cospdd. (C.5)

Note further that the fluctuation in z at the lower bound-
ary satisfies the linearized equation

Uy Ve
Zg + = Zon + — (20 — Zog) = 0, (C.6
“ ¥ o oose a(o¢ 506) (C.6)
while the A component of the linearized momentum
equation is

(uolte )n M.,

Uer — CaoVe + + =0,
¢~ o acos¢ acosgo

(C.7)

where {, is the absolute vorticity.

Substituting from (C.6) for v, in the second term on
the right-hand side of (C.5), and then combining with
(C.7), gives

d . -
—f Aa cospdpdh = f g 'p.M,, + 204 cos¢
dt J g4 a7 Zog

@—' acosogdd.

Zp0¢p — Z0¢

_ M exle

+ (uez.) +
acos¢ (uze);

(C.8)

Finally, using the identity that M, = —p.2¢s/0¢ + 82,
it is possible to show that the first two terms in the
integrand on the right-hand side cancel. Transforming
again, using (C.4a), to # as the independent variable
for the integration, and using (C.4b) to eliminate z, in
favor of ¢;,, it follows that

d - d
% f% Aa cospdpdf + d_tfa% —0oa’ cos’Pyg

X [ﬂ? + aPoaoG E)}w =0. (C9)
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The second integrand may therefore be interpreted as
a boundary contribution to the wave activity, in agree-
ment with (2.15).
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