Atmospheric Chemistry

Graduate Student

  • Stone Abdullah
  • Morgan Gorris
  • Mackenzie Grieman
  • Daun Jeong
  • Mindy Nicewonger
  • Dianne Sanchez
  • Jordan Schnell
  • Wenshan Wang

Research Staff

Postdoctoral Scholar

Student Assistant

  • Nicole DeLuca
  • Isis Frausto-Vicencio
  • Ayush Jangam
  • Liyu Luo
  • Hollie McKiel
  • Andrew Miller
  • Melinda Nicewonger
  • Whitney Sum
  • Mark Wang
  • Nick Weis

Research Topics Include:

  • Emissions, transformation and transport of chemicals throughout the troposphere and stratosphere
  • Understanding the influence of atmospheric chemistry on climate and air quality
  • Development of new analytical techniques for trace gases
  • Field expeditions
  • Stable isotope studies
  • Numerical models of global atmospheric photochemistry and transport


Recent Publications

Holmes, Christopher D., Qi Tang, and Michael J. Prather. "Uncertainties in climate assessment for the case of aviation NO." Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 10997-11002. Abstract
Research Lab Description Links to more information
Trumbore / Czimczik Research Group

The focus of my research is the cycling of carbon and nitrogen in the terrestrial biosphere. I am particularly interested in understanding how climate change and alterations in land use and management as well as in the frequencies of disturbances (i.e. drought, fire) affect the allocation and residence time of carbon and nitrogen in soils and perennial plants. And, how changes in terrestrial ecosystems feed back to the climate system, e.g. by constraining future levels of greenhouse gases in the atmosphere.

Prather Modeling Lab

The Prather Modeling Lab focuses on simulation of the physical, chemical and biological processes that determine atmospheric composition and development of (1) detailed numerical models of photochemistry and atmospheric radiation and (2) global chemical transport models that describe ozone and other trace gases.

Saltzman / Aydin Research Group

The oceans produce a diverse array of trace gases that affect the chemistry of the atmosphere and the climate system. The Saltzman / Aydin Research Group’s goal is to understand what controls the production, emissions, and atmospheric chemistry of oceanic trace gases. Eric Saltzman, Murat Aydin, and their team develop trace gas detectors, collect field data from islands and ships and use computer models to simulate natural processes. The group is also interested in the history of trace gas/climate interactions.

Zender Research Group

The Zender Research Group studies the microphysics of trace gas, aerosol, and surface interactions with Earth's radiative, thermodynamic, and chemical processes. Charles Zender and his team develop and refine the representation of these processes to improve climate prediction. Model simulations, combined with lab, field, and satellite data, help them predict and attribute features of climate and climate change. Current research includes mineral dust and carbonaceous aerosols, snow lifecycle and albedo, aerosol impacts on ocean biogeochemistry, wind-driven surface energy/mass exchange, climate-disease links, and super-dooper-big-scale data analysis. The team's aerosol, radiative transfer, and data processing models are freely available and are used by geoscientists world-wide.

Biosphere-Atmosphere-Human Interaction Research Group (Kim)

Saewung Kim's Biosphere-Atmosphere-Human Interaction Research Group conducts research on how biosphere-atmosphere-human interactions are affecting tropospheric oxidation capacity. The lab’s main research activities are deploying gas phase atmospheric constituents monitoring instrumentation to the field to constrain tropospheric oxidation capacity.