Research Labs

ESS faculty can be found flying in the top of the troposphere, trekking though tropical regions, exploring remote areas, sailing the world ocean, drilling into the ice of Antarctica, and designing computer simulations as they seek to understand the Earth system. Their wide-ranging expertise allows students to learn valuable scientific skills in the classroom, laboratory, and field experiences.

An overview of each ESS research group appears below.

Research Lab Description
Biosphere-Atmosphere-Human Interaction Research Group (Kim)

Saewung Kim's Biosphere-Atmosphere-Human Interaction Research Group conducts research on how biosphere-atmosphere-human interactions are affecting tropospheric oxidation capacity. The lab’s main research activities are deploying gas phase atmospheric constituents monitoring instrumentation to the field to constrain tropospheric oxidation capacity.


Research Area: Atmospheric Chemistry

Czimczik Lab

Claudia Czimczik and her team work to understand the impacts of climate change, alterations in natural disturbance frequencies (i.e. fire), and changes in land use and management (i.e. urbanization) on the cycling of carbon and nitrogen in terrestrial ecosystems. The group's research aims to appreciate and predict how human activities will impact the functioning of terrestrial ecosystems in the future and how changing terrestrial ecosystems will feedback to the climate system. A major focus of these activities is on high-latitude ecosystems, i.e. arctic tundra and boreal forests.


Research Area: Biogeochemical Cycles

Davis Research Group

The Davis Research Group works to understand and find ways to meet the challenge of satisfying global demand for energy, food, and goods without emitting CO2 to the atmosphere. Steve Davis and his team are interested in energy technology and policy; emissions and energy embodied in international trade; life cycle assessment; interactions of agriculture and climate; human drivers of greenhouse gas emissions; and socio-economic inertia of climate change.


Research Area: Biogeochemical Cycles

Druffel Lab

Ellen Druffel and her team investigate why the 14C age of marine dissolved organic carbon (DOC) is thousands of years old, despite evidence that most of it is produced in the surface ocean during photosynthesis. The group also studies how ocean circulation changed in the tropical and subtropical Pacific during the past millennium.


Research Area: Biogeochemical Cycles

Goulden Lab

The Goulden Lab focuses on how terrestrial ecosystems work, with an emphasis on what controls the exchanges of gases and energy between land surfaces and the atmosphere.


Research Area: Biogeochemical Cycles

Hydrology & Climate Research Group and the UCCHM (Famiglietti)

Jay Famiglietti's Hydrology & Climate Research Group investigates how the water cycle and freshwater resources are being impacted by climate change. The group has developed advanced computer models and use satellite remote sensing to track water availability around the globe. They have pioneered methods using data from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission to identify groundwater depletion in the world’s major aquifers.


Research Area: Physical Climate

Instrumentation Development Facility

The Electronics Facility is equipped to support electronic instrumentation from simple interconnects to complex systems. Please contact the facility for advice, repair, design & development, and parts services. All departments are welcome. Off site work accepted.


Research Area: General Earth System Science

Johnson Research Group

The Johnson Research Group's primary research goal is to reconstruct past climate (paleoclimate) over the past several glacial-interglacial cycles at seasonal to millennial resolution and to compare these records with other paleoclimate data and model output. Specifically, the lab utilizes geochemical variations preserved in natural calcium carbonate archives such as speleothems (cave deposits) to construct well-dated records of past precipitation, temperature, vegetation, and/or atmospheric circulation in the tropical Indo-Pacific, the Asian monsoon region, and California.


Research Area: Physical Climate

Magnusdottir Modeling Lab

The Magnusdottir Modeling Lab focuses on atmospheric and climate dynamics. Gudrun Magnusdottir and her team use observations, as well as a hierarchy of numerical models, to study dynamical processes in the atmosphere and climate variability. The lab investigates feedback mechanisms influencing the unprecedented high-latitude trends in several climate variables over recent decades, tropical-extratropical and troposphere-stratosphere dynamical interactions, and the Intertropical Convergence Zone (ITCZ) -- its variability on different timescales and what controls it in the climate system.


Research Area: Physical Climate

Martiny Research Group

Adam Martiny and his team work to identify (i) how microorganisms respond and genetically adapt to environmental variations and (ii) the biogeochemical role of this biodiversity. The results from this research are important for both understanding the basic biology and diversity of globally abundant microorganisms as well as gaining a mechanistic understanding of the biological controls on nutrient cycles.


Research Area: Biogeochemical Cycles

Moore Modeling Lab

The Moore Modeling Lab is interested in the role of marine biota in global biogeochemical cycles and Earth's climate system. Keith Moore's research focuses on understanding how marine phytoplankton and other ocean biota influence the cycling of key elements (carbon, nitrogen, phosphorus, silicon, iron) in the oceans, and on the biogeochemical links between the ocean, atmosphere, and land through atmospheric transport and riverine runoff.


Research Area: Biogeochemical Cycles

Morlighem Research Group
Prather Modeling Lab

The Prather Modeling Lab focuses on simulation of the physical, chemical and biological processes that determine atmospheric composition and development of (1) detailed numerical models of photochemistry and atmospheric radiation and (2) global chemical transport models that describe ozone and other trace gases.


Research Area: Atmospheric Chemistry

Primeau Modeling Lab

The Primeau Research Group is interested in the ocean's role in the climate of the Earth. The ocean plays a determining role in the variability of the climate system on inter-annual to millennial timescales. The lab uses global observations and a hierarchy of ocean models together with advanced computational and mathematical techniques to study the ocean. Francois Primeau and his team’s current research is directed in three broad areas: 1) the surface-to-surface transport and ventilation of ocean water masses; 2) inter-annual to decadal variability of the ocean's wind-driven circulation; and 3) global ocean biogeochemical cycles.


Research Area:
Biogeochemical Cycles
Physical Climate

Pritchard Lab

The Pritchard Lab's expertise is in next generation climate simulation, focusing on the physics of cloud-related processes in the virtual atmosphere. Mike Pritchard and his team apply a range of traditional and experimental new approaches to study the global atmosphere in a virtual laboratory. These include conventional global climate models and experimental approaches such as "superparameterized" prototype global models.

Research Area: Physical Climate

Randerson Research Group

The Randerson Research Group seeks to improve our understanding of global change in terrestrial ecosystems. They use remote sensing data, atmospheric trace gas observations, field measurements, and models in new ways to study feedbacks between terrestrial ecosystems and climate.


Research Area:
Biogeochemical Cycles
Physical Climate

Rignot Research Group

The primary interest of the Rignot Research Group is to understand the interactions of ice and climate, in particular to determine how the ice sheets in Antarctica and Greenland will respond to climate change in the coming century and how they will affect global sea level. Glaciology mixes a variety of scientific and engineering disciplines. Eric Rignot and his team combine satellite remote sensing techniques (imaging radar, laser altimetry, radio echo sounding) airborne geophysical surveys, field surveys (GPR, GPS) and numerical modeling (ice sheet motion and ocean circulation near glaciers). In May 2013, the Rignot Research Group recieved a NASA award for "Ice Velocity Mapping of the Antarctic Ice Sheet," a five-year project funded that will extend funding at UC Irvine for ten years to map ice motion in Antarctica and deliver the products to the science community.


Research Area: Physical Climate

Saltzman / Aydin Research Group

The oceans produce a diverse array of trace gases that affect the chemistry of the atmosphere and the climate system. The Saltzman / Aydin Research Group’s goal is to understand what controls the production, emissions, and atmospheric chemistry of oceanic trace gases. Eric Saltzman, Murat Aydin, and their team develop trace gas detectors, collect field data from islands and ships and use computer models to simulate natural processes. The group is also interested in the history of trace gas/climate interactions.


Research Area:
Atmospheric Chemistry
Biogeochemical Cycles

Stable Isotope Ratio Mass Spectrometry (IRMS) Facility

The UC Irvine IRMS Facility in the School of Physical Sciences and the School of Biological Sciences houses a variety of instrumentation to prepare and analyze gases, organic matter, inorganic samples, and water for stable isotope analysis. IRMS are used to measure the ratio of rare, heavy isotopes to common, light isotopes. There are five IRMS at UC Irvine to measure stable isotope ratios of the light elements: Carbon, Nitrogen, Oxygen, and Hydrogen.


Research Area: Biogeochemical Cycles

Trumbore Lab

Susan Trumbore has been at the Max Planck Institute for Biogeochemistry (MPI-BGC) since 2009. She is on leave from the University of California at Irvine, where she is Professor of of Earth System Science. Trumbore's main research contribution is the application of radiocarbon to study the dynamics of carbon cycling in plants and soils.


Research Area: Biogeochemical Cycles

Velicogna Research Group

The focus of the Velicogna Research Group is to study the cryospheric components of the water cycle and their response to climate forcing. In particular, Isabella Velicogna and her team study the Greenland and Antarctic ice sheets, their contribution to sea level rise and the evolution of the Arctic water cycle in response to climate change.


Research Area: Physical Climate

W. M. Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory

In 2001, ESS/CGECR researchers Ellen Druffel, John Southon and Susan Trumbore were awarded $2 million by the W.M. Keck Foundation for the development of an accelerator mass spectrometry (AMS) facility – the Keck-Carbon Cycle AMS facility - for radiocarbon measurements in support of carbon cycle research at University of California, Irvine.

Related Research Group: Santos Research Group


Research Area: Biogeochemical Cycles

Yu Modeling Lab

Research Topics Include:

  • Two Types of El Nino: Central-Pacific El Nino and Eastern-Pacific El Nino
  • A New Global Parallel and Coupled Ocean-Atmosphere GCM
  • ENSO Simulation, Dynamics, and Prediction
  • ENSO-Monsoon Interactions
  • Indian Ocean Zonal Mode
  • Pacific Decadal Oscillation (PDO)
  • Tropical Instability Waves (TIW)
  • Tropical-Extratropical Interactions
  • Cloud-Radiation Feedback
  • Jetstream and Stormtrack Vacillation
  • Regional Climate Variations

Research Area: Physical Climate

Zender Research Group

The Zender Research Group studies the microphysics of trace gas, aerosol, and surface interactions with Earth's radiative, thermodynamic, and chemical processes. Charles Zender and his team develop and refine the representation of these processes to improve climate prediction. Model simulations, combined with lab, field, and satellite data, help them predict and attribute features of climate and climate change. Current research includes mineral dust and carbonaceous aerosols, snow lifecycle and albedo, aerosol impacts on ocean biogeochemistry, wind-driven surface energy/mass exchange, climate-disease links, and super-dooper-big-scale data analysis. The team's aerosol, radiative transfer, and data processing models are freely available and are used by geoscientists world-wide.


Research Area:
Atmospheric Chemistry
Physical Climate