
R E S E A R CH AR T I C L E

The efficacy of tropical and extratropical predictors
for long-lead El Niño-Southern Oscillation prediction: A
study using a machine learning algorithm

Wan-Jiao Song1,2,3 | Jin-Yi Yu4 | Tao Lian2

1Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center
for Space Weather), China Meteorological Administration, Beijing, China
2State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China
3Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing, China
4Department of Earth System Science, University of California, Irvine, California, USA

Correspondence
Wan-Jiao Song, Key Laboratory of
Radiometric Calibration and Validation
for Environmental Satellites, National
Satellite Meteorological Center (National
Center for Space Weather), China
Meteorological Administration, Beijing
100081, China.
Email: songwj90@163.com

Funding information
National Natural Science Foundation of
China, Grant/Award Number: 41801355;
NSF's Climate and Large-Scale Dynamics
Program of USA, Grant/Award Number:
AGS-2109539; Open Fund of State Key
Laboratory of Satellite Ocean
Environment Dynamics, Second Institute
of Oceanography, Grant/Award Number:
QNHX2213

Abstract

This study illustrates the considerable improvement in accuracy achievable for

long-lead forecasts (18 months) of the Ocean Niño Index (ONI) through the utili-

zation of a long short-term memory (LSTM) machine learning algorithm. The

research assesses the predictive potential of eight predictors from both tropical

and extratropical regions constructed based on sea surface temperature, outgoing

longwave radiation, sea surface height and zonal and meridional wind anomalies.

In comparison to linear regression model forecasts, the LSTM model outperforms

them for both the tropical and extratropical predictor sets. Among all the predic-

tors, the western North Pacific (WNP) index demonstrates the highest prediction

skill in ONI forecasts, followed by the North Tropical Atlantic (NTA) index and

then the sea surface height index. While other predictors help the LSTM model

to forecast either the phase variation of the amplitude variation of the observed

ONI, the extratropical WNP predictor enables the LSTM model to forecast both

variations. This superiority can be attributed to the involvement of SST anomalies

in the WNP region in both tropical and extratropical El Niño–Southern Oscilla-

tion (ENSO) dynamics, allowing for the utilization of predictive potential from

both components of ENSO dynamics. The study also concludes that the extratro-

pical ENSO dynamics provide a robust source of predictability for long-lead

ENSO forecasts, which can be effectively harnessed using the LSTMmodel.
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1 | INTRODUCTION

The El Niño–Southern Oscillation (ENSO) is a large-scale
combined phenomenon of fluctuating marine and

atmospheric circulation over the Pacific Ocean. These
fundamental processes governing the evolution of ENSO
events are primarily concentrated at tropical Pacific
(Neelin, 1991; Philander, 1998; Wang, 2018). These
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processes involve complex interactions among atmo-
spheric properties, surface ocean properties and subsur-
face ocean properties. Many ENSO statistical schemes
and physical prediction models have predominantly uti-
lized tropical atmospheric and oceanic properties in pre-
dicting typical ENSO indices on lead times of 6 months
(Barnston et al., 2019; Jin & Kinter, 2009; Latif
et al., 1998). These models have demonstrated skilful sea-
sonal dependence in predictability of ENSO process. In
recent decades, the performance of ENSO prediction
models has declined (Barnston et al., 2012). This may be
attributed to changes in the properties and dynamics of
ENSO (Capotondi et al., 2015; Yu et al., 2012, 2017),
which have rendered traditional tropical predictors less
effective in forecasting ENSO events. To restore the previ-
ous level of skill, it may be necessary to incorporate addi-
tional predictors into ENSO prediction models.

During the past two to three decades, ENSO events
have exhibited a notable shift in their spatial characteris-
tics. Instead of having the largest sea surface temperature
(SST) anomalies in the tropical eastern Pacific as
observed in the majority of ENSO events in the 20th cen-
tury, recent ENSO events have shown their most promi-
nent SST anomalies in the tropical central Pacific. This
distinction has sparked significant interest in studying
the central Pacific (CP) and eastern Pacific (EP) ENSOs
(Kao & Yu, 2009; Yu & Kao, 2007). Several studies have
highlighted the potentially greater influence of the extra-
tropical Pacific, particularly in the case of CP ENSO
events (Yu et al., 2010, 2017; Yu & Kim, 2011). ENSO pre-
cursors have been identified not only in the tropical
Pacific but also in the extratropical Pacific. SST anomalies
in the eastern and western North Pacific, for instance,
have been recognized as precursors to ENSO events
(Pegion et al., 2020; Wang et al., 2012; Yu et al., 2010;
Yu & Kim, 2011). Similarly, variables in the extratropical
regions of other ocean basins can serve as ENSO precur-
sors. For example, temperature anomalies in the North
Tropical Atlantic during boreal spring have been shown
to trigger ENSO events (Ham et al., 2013a, 2013b; Wang
et al., 2017). These recent studies suggest that both tropi-
cal and extratropical ocean-atmospheric predictors from
the Pacific and other ocean basins hold potential for
ENSO prediction and can be integrated into ENSO fore-
cast models to enhance prediction skill.

ENSO predictions are typically carried out using
statistical schemes and dynamical models. Statistical
schemes are simpler and computationally less demanding
compared to dynamical models. Conventional statistical
models struggle to capture the nonlinear aspects of ENSO
dynamics (Pegion et al., 2020; Timmermann et al., 2018).
In recent years, there have been several attempts to utilize
machine learning for ENSO forecasts. Machine learning
algorithms have shown greater potential than conventional

statistical methods in capturing the nonlinear characteris-
tics and addressing challenges such as the spring predict-
ability barrier (Chen et al., 2021; Nooteboom et al., 2018).
One particular machine learning technique is the long
short-term memory (LSTM) neural network model, which
can be constructed by integrating ensemble empirical
mode decomposition with a convolutional neural network
on occasion. LSTM models have demonstrated skill in pro-
ducing accurate El Niño index forecasts (Guo et al., 2020;
Gupta et al., 2022; He et al., 2017). However, none of these
previous studies examined the predictability or prediction
of ENSO using full collection of multiple marine and atmo-
spheric, tropical and extratropical, the Pacific and Atlantic
Ocean precursors. In the present study, to categorize more
objectively the candidate and core variables associated with
the extreme phases of the ENSO forcing, a set of LSTM
machine learning technique and linear regression statisti-
cal methods were employed for determining the efficacy of
ENSO-related marine and atmospheric signal precursors.
The main objective of this study is to examine whether
there are any systematic differences in the predictive capa-
bilities of tropical and extratropical predictors in ENSO
forecasts and to understand the underlying reasons.

2 | DATA AND METHODS

Various marine and atmospheric products are used in
this study, which are listed in Table 1 for reference.
Specifically, the SST data is obtained from the NOAA
Extended Reconstructed Sea Surface Temperature
V4 dataset (Huang & Xie, 2015). The interpolated outgo-
ing long-wave radiation (OLR) data (Liebmann &
Smith, 1996) is utilized, along with zonal wind and
meridional wind (U-wind and V-wind, respectively) data
from the National Centers for Environmental Prediction-
National Centre for Atmospheric Research Reanalysis
(Kalnay et al., 1996). Sea surface height (SSH) data is
sourced from the National Centers for Environmental
Prediction Global Ocean Data Assimilation System
(Behringer & Xue, 2004). All datasets have been
re-gridded to a uniform 2.5� × 2.5� horizontal resolution
and are available monthly. The Ocean Niño Index (ONI)
is derived from the National Centers for Environmental
Prediction, part of the National Oceanic and
Atmospheric Administration. Anomalies in this study are
calculated by subtracting the long-term monthly average
over the analysis period. Linear trends were removed
using the linear least squares fit in time. The traditional
Niño3.4 index, based on monthly SST anomalies over
the Niño3.4 region (5�S–5�N, 170�–120�W), is also
computed. The study period spans from 1982 to 2021
to ensure that all necessary atmospheric and marine
variables are available.
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Complex neural networks and machine learning
techniques are highly effective in analysing large
volumes of data. Of the recurrent neural networks
available, long short-term memory networks are partic-
ularly noteworthy. One main advantage of recurrent
neural networks is their interconnected inputs, which
can capture the interactions among multiple variables
involved in the ENSO phenomenon. LSTM networks
are designed to retain short-term valuable information
in memory for long-term utilization, making them
suitable for ENSO forecasting (Behringer & Xue, 2004;
Guo et al., 2020; Huang et al., 2019; Huang & Xie, 2015;
Kalnay et al., 1996; Liebmann & Smith, 1996). Figure 1
illustrates the components of the LSTM network,
which comprise a memory cell and three distinct gates:
the input gate, forget gate and output gate. These gates
are crucial for updating, maintaining and deleting
information within the cell state. The calculation pro-
cess of the LSTM network can be expressed through
Equations (1)–(5),

Forget gate f <t>=σ Wxf x
<t>+Whf x

<t−1>+bf
� �

, ð1Þ

Input gate i<t>=σ Wxix
<t>+Whix

<t−1>+bi
� �

, ð2Þ

Output gate o<t>=σ Wxox
<t>+Whoh

<t−1>+bo
� �

, ð3Þ

Neutron c<t> ¼ f <t>⨀c<t−1>þ i<t>⨀ tanh
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ð4Þ

Objective function h<t>=o<t> tanh⨀ c<t>ð Þ, ð5Þ
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1
n
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� �2
: ð6Þ

In the context of this study, the symbol
N

represents
multiple and

L
represents plus. σ represents the sig-

moid function, which yields values in the range of [0, 1].

TABLE 1 Monthly reanalysis products utilized in this study

Var. Data source Span Spatial res. Unit

SST ERSST V4 (Huang et al., 2016) Jan 1854–Feb 2022 1� × 1� �C

SSH GODAS (Behringer & Xue, 2004) Jan 1980–Dec 2019 1/3� × 1� m

OLR NOAA/PSD (Liebmann & Smith, 1996) Jun 1974–Dec 2019 2.5� × 2.5� W�m−2

U-wind NOAA/PSD (Kalnay et al., 1996) Jan 1948–Dec 2020 2.5� × 2.5� m�s−1

V-wind NOAA/PSD (Kalnay et al., 1996) Jan 1948–Dec 2020 2.5� × 2.5� m�s−1

ONI NOAA/CPC Jan 1950–Feb 2022 �C

Abbreviations: ONI, Ocean Niño Index; OLR, outgoing longwave radiation; SSH, sea surface height; SST, sea surface temperature; U-wind, sea surface zonal
wind; V-wind, sea surface meridional wind.

FIGURE 1 Structure diagram of the long short-term memory neural network. Here,
N

represents multiple,
L

represents plus. σ

represents sigmoid function, which ranges [0, 1]. tanh represents tanh function, which is used as the active function in the normal neural

network. x<t> represents the input data. h<t−1> represents the history data information computed by the last neuron. h<t> represents the data

computed by this neuron. c<t−1> represents the memory data from last neuron. c<t> represents the memory data after processing by this

neuron
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The symbol tanh corresponds to the hyperbolic tangent
function, employed as the activation function in conven-
tional neural network. c<t−1> denotes the memory data
received from previous neuron, whereas x<t> represents
the input data. h<t−1> signifies the historical information
computed by the preceding neuron and h<t> denotes the
data computed by the current neuron. The processed
memory data by this neuron is denoted as c<t>. n signifies
the number of samples. Yi represents the actual value,
whereas bYi denotes the predicted value.

Previous studies have indicated that training models
can be prone to overfitting when the available training
data is limited (Guo et al., 2020; McPhaden et al., 2015;
Srivastava et al., 2014). In order to address this issue,
dropout rates are utilized as a means of mitigating over-
fitting. To determine the optimal dropout rate, a range of
dropout rates was selected for comparison. The training
experiments were conducted using dropout rates of 0.1,
0.2, 0.3, 0.4 and 0.5, with a dropout rate of 0.5 demon-
strating superior training performance. Furthermore, dif-
ferent combinations of cell numbers (24, 36, 48) and
iterator numbers (100, 120, 150, 180, 200) were tested to
evaluate their impact on training. The results indicated
that the best training performance was achieved when
the cell number was set to 24 and the iterator number
was set to 100. For climate indices forecasting, a monthly
time step with a step size of 18 was employed. The mean
square error (MSE) served as the loss function to evaluate
the performance of the LSTM model (Equation (6)). To
ensure consistency and comparability, both the training

set (1982–2013) and the validation set (2014–2021)
underwent standardization using the Z-score method.
The analysis was performed on a test data set covering
the period from 1982 to 2021. Additionally, we examined
the correlation coefficient (R), root-mean-square error
(RMSE) and standard deviation (SD) to evaluate the per-
formance of different linear regression statistical schemes
and machine learning models in terms of discrimination
and calibration. The optimal predictive model was
selected based on minimal root mean squared error and
maximal correlation coefficient over the leave eight out
cross-validated datasets.

3 | EXPERIMENT DESIGN AND
RESULTS

3.1 | Identification of precursors

Selecting the appropriate attributes based on the evolu-
tion of ENSO is crucial for improving the efficiency of
ENSO prediction using machine learning techniques. It
provides a physical basis for essential information to
make accurate predictions. Network variables offer global
information on building correlations to help predict
ENSO events. This study employed a total of eight air–
sea variable-based indices as precursors for ENSO predic-
tion. The ONI serves as the target forecasting index. The
definitions of the eight precursors are indicated in
Table 2, which include five tropical precursors and three

TABLE 2 Definitions of the Niño indices and their precursors from both the tropical and extratropical Pacific oceans: (1) tropical SST

index, defining sea surface temperature anomalies in the Niño3–Niño4 region; (2) tropical SSH index, outlining sea surface height anomalies

in the tropical Niño3–Niño4 region; (3) tropical OLR index, investigating outgoing longwave radiation anomalies over the tropical central

Pacific; (4) tropical U-wind index, examining zonal wind anomalies in the tropical Niño3–Niño4 region; (5) tropical V-wind index, detailing

meridional wind anomalies in the tropical Niño3–Niño4 region; (6) NTA index, characterizing sea surface temperature anomalies over the

north tropical Atlantic; (7) extratropical WNP index, exploring sea surface temperature anomalies over the western North Pacific; and (8)

extratropical SPQ index, investigating sea surface temperature anomalies over the South Pacific

Predictors Definitions References

SST index SST anomaly in Niño4 and Niño3 areas
(160�E–90�W, 5�S–5�N)

Trenberth and Stepaniak (2001)

SSH index SSH anomaly (160�E–90�W, 5�S–5�N) Trenberth and Stepaniak (2001)

OLR index OLR anomaly (160�E–160�W, 5�S–5�N) Ma et al. (2010)

U-wind index Zonal wind anomaly (160�E–90�W, 5�S–5�N) Trenberth and Stepaniak (2001)

V-wind index Meridional wind anomaly (160�E–90�W, 5�S–5�N) Trenberth and Stepaniak (2001)

North tropical Atlantic (NTA)
index

SST anomaly (EQ–15�N, 90�W–20�E) Ham et al. (2013a, 2013b)

Western North Pacific (WNP)
index

SST anomaly (90�E–150�W, 10�S–30�N) Modified from Wang et al. (2012) and Pegion
et al. (2020)

South Pacific quadrupole
(SPQ) index

SST anomaly (150�E–75�W, 20�S–65�S) Ding et al. (2015), Qin et al. (2017) and Pegion
et al. (2020)
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extratropical ENSO precursors. Figure 2 displays the
major domains of the tropical and extratropical ENSO
precursors, superimposed on the SST anomalies regressed
onto the ONI during the boreal winter (December–
January–February). The specific longitude–latitude
regions utilized to define these indices are outlined in
Table 2.

The tropical precursors include indices that repre-
sent SST, SSH, U-wind and V-wind anomalies averaged
in different regions of the tropical Pacific (see the region
information provided in Table 2). These indices were
used to represent ocean–atmosphere interactions over
the tropical Pacific. Additionally, a tropical OLR index
is included to account for the potential influence of
tropical deep convection, as represented by variations in
OLR (Ma et al., 2010). Different extratropical precursors
have been identified in the literature using various defi-
nitions. Basin-wide interactions between the tropical
and extratropical Pacific have also been shown to affect
ENSO events by processes in the extratropical northern
and southern Pacific in previous studies (Pegion
et al., 2020; Yu et al., 2010; Zhang et al., 2014). As previ-
ously mentioned, SST anomalies in the northern tropi-
cal Atlantic region can also affect the evolution of ENSO
through interbasin interactions with the extratropical
Pacific (Ham et al., 2013a; Ren et al., 2019; Wang
et al., 2017). These extratropical processes are referred
as the subtropical ENSO dynamics (Yu & Fang, 2018)

and are referred to as the extratropical ENSO dynamics
here. We choose to use three extratropical precursors to
represent the extratropical ENSO dynamics. They
respectively represent SST anomalies over the North
Tropical Atlantic (NTA), western North Pacific (WNP)
and South Pacific (SPQ).

A correlation heat map is used to evaluate the simul-
taneous relationships between the ONI and the eight
selected precursors (Figure 3). The ONI exhibits stronger
correlations with almost all the tropical indices (SST,
OLR, SSH and U-wind), except for the V-wind index.
These variables are intercorrelated but not independent.
In contrast, the ONI exhibits weak correlations with
the extratropical indices (WNP and SPQ), with the excep-
tion of the NTA index. The simultaneous correlations
between the ONI and the extratropical WNP and SPQ
indices are close to zero. Although the WNP and V-wind
indices show weak direct correlations with the ONI,
they display measurable correlations with the group of
indices that have high direct correlations with the ONI.
The WNP index exhibits measurable correlations with
the SSH and NTA indices, while the V-wind index
displays measurable correlations with the SSH, OLR and
U-wind indices. The northern Pacific (i.e., the WNP
index), southern Pacific (i.e., the SPQ index) and tropical
Atlantic Ocean (i.e., the NTA index) are not highly corre-
lated with each other, indicating that the distinct basin
could provide independent information in predicting

FIGURE 2 Domains of tropical and extratropical ENSO precursors are depicted in the figure. The colour shading represents sea surface

temperature anomalies in DJF (December–January–February) regressed onto the Ocean Niño Index from 1983 to 2019. Detailed information

regarding the data sets and the exact longitudes–latitudes of the domains for calculating the precursors can be found in Tables 1 and 2. The

WNP stands to the western North Pacific, NTA stands for the North tropical Atlantic, and SPQ stands for the South Pacific quadrupole

[Colour figure can be viewed at wileyonlinelibrary.com]
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ENSO phenomenon. Through intercorrelations among
the predictors, all eight predictors have the potential to
affect ENSO predictions.

3.2 | Performance of the LSTM model

To determine the overall performance, eight predictor
combinations were assessed. The LSTM algorithm's effec-
tiveness for predicting ONI was analysed using two
methods: employing the tropical Pacific SST index as the
sole predictor, and combining the SST index with one of
the other seven Table 2 indices. The “SST-only LSTM”
represented the utilization of LSTM exclusively to
monthly SST anomalies in the Niño3 and Niño4 areas.
The performance of the LSTM and regression models was
evaluated in Figure 4, considering the correlation coeffi-
cient (R), root-mean-square error (RMSE) and standard
deviation (SD) between the forecasted and observed ONI
values throughout the entire forecasting period from
1983 to 2021. In this discussion, our focus is on compar-
ing the correlation coefficient values. At the 18-month
lead time, there was a significant divergence in perfor-
mance between the LSTM and regression models, as
depicted in Figure 4. The LSTM model outperformed the
regression model in all eight predictor combinations,
including the scenario where the tropical SST index was
the only predictor. The correlation coefficient between

the forecasted and observed ONI values for the LSTM
model was 0.73, whereas the regression model yielded a
correlation of 0.22. This improvement indicates the LSTM
model's superior ability, relative to linear regression, to
leverage the prediction potential of the tropical SST index
for forecasting the ONI. The LSTM algorithm successfully
addresses the problem of vanishing gradients by retaining
the available information and ignoring the unavailable
information (Guo et al., 2020). Linear regression models,
in contrast, are restricted in capturing only linear rela-
tionships between predictors and ENSO indices (Pegion
et al., 2020).

Including the tropical SSH index as the second predic-
tor in the LSTM model results in a skill increase to
R = 0.76 (Figure 4). This improvement aligns with the
delayed or recharged oscillator theories of ENSO
(Battisti & Hirst, 1989; Cane & Zebiak, 1985; Jin, 1997;
Suarez & Schopf, 1988), which depict the tropical ENSO
dynamics and illustrate that ENSO-related subsurface
thermocline variation in the tropical Pacific (represented
by the SSH index) displays a lead-lagged correlation with
tropical SST variation, instead of a simultaneous one. Yu
and Fang (2018) have previously emphasized the semi-
periodic ENSO evolution that characterizes the tropical
ENSO dynamics through the interaction between
tropical SST, wind and SSH variations. The semiperiodic
nature of the ENSO cycle may be better identified by
machine learning algorithms, enabling more accurate

FIGURE 3 A heatmap is presented, illustrating the simultaneous correlation coefficients between the Ocean Niño Index (ONI) and the

eight predictors over the period of 1982–2019. The predictors include the tropical Pacific sea surface temperature (SST), sea surface height

(SSH), outgoing longwave radiation (OLR), sea surface zonal wind (U-wind), and meridional wind (V-wind), as well as SST indices for the

North Tropical Atlantic (NTA), western North Pacific (WNP), and South Pacific (SPQ) (see Table 2 for details). Positive correlations are

represented by red shadings, while negative correlations are denoted by blue shadings. The intensity of the colour shading indicates the

magnitude of the correlation, with darker shades indicating higher magnitudes [Colour figure can be viewed at wileyonlinelibrary.com]
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predictions at longer lead times than at shorter lead
times. The periodic nature of ENSO is attributed to the
cyclic oscillation between the El Niño and La Niña
phases. These phases are characterized by lagged thermo-
cline responses of SSH to surface wind forcing, which are
distinguishing features of ENSO. Therefore, incorporat-
ing both the tropical SSH index and the tropical SST
index offers superior forecast performance relative to
incorporating other tropical indices (such as OLR, U and V)
for multivariable forecasting.

As shown in Figure 4, the LSTM model performs
best with extratropical predictors combined with the
tropical SST index at 18-month lead times. Specifically,
the LSTM model exhibits significantly better perfor-
mance during the 18-month forecast, with R-value rang-
ing between 0.71 and 0.89 when implementing the SPQ,
NTA and WNP indices with the tropical SST predictor,
compared to tropical predictors, which generate an R-
value range of 0.54–0.76 when U-wind, OLR and SSH
indices are employed. Interestingly, the WNP index,
which represents a dipole SST over the western North
Pacific, serves as a notable predictor of El Niño occur-
rences in the Northern Hemisphere. The investigation
discovered that WNP produced the most effective pre-
dictive results (R = 0.89) for forecasting the ONI, fol-
lowed by the NTA index (R = 0.79), and subsequently
by the SPQ index (R = 0.71). These findings highlight
the value of utilizing extratropical processes linked with
the three indices to forecast the ONI at extended lead
times. These results are aligned with prior research that

posited that extratropical Pacific atmospheric variability
influences ENSO evolution through a seasonal footprint
mechanism during the pre-ENSO winter, thereby
impacting spring and summer conditions in subsequent
years (Di Lorenzo et al., 2010; Vimont et al., 2003; Yu
et al., 2010). Precursors to ENSO in the extratropical
North Pacific offer additional and diverse sources
of ENSO predictability (Bruce et al., 2013; Zhao
et al., 2021). It is noteworthy to observe the significant
efficacy of the NTA index in facilitating an extended
lead time for ENSO predictions using machine learning
algorithms. As previously indicated, NTA SST anomalies
play a role in commencing ENSO events by means of
interbasin interactions, thus providing an extra predic-
tion potential beyond the tropical SST index. These find-
ings demonstrate the capability of machine learning
algorithms to identify and exploit nonlinear correlations
inherent in interbasin interactions between ENSO and
adjacent oceans for ENSO prediction.

3.3 | Ocean Niño Index evolutions
forecasted using tropical and extratropical
predictors

Figure 5 compares the time series of monthly observed
ONI values and 18-month forecasts using various predic-
tor combinations, including the tropical SST index alone,
as well as four multivariable combinations (SST + SSH,
SST + SPQ, SST + NTA and SST + WNP). In Figure 5a,

FIGURE 4 Performances of the long short-term memory network (LSTM) and linear regression (LR) models at their 18-month lead

time forecasts. The performances are evaluated based on assessing the correlation coefficient (R), root-mean-square error (RMSE) and

standard deviation (SD) between the forecasted and observed ONI values during the entire forecasting period (1983–2021) for eight groups of
precursor combinations. The LR bars indicate the performance of the LR model based on the correlation value, while the LSTM minus LR

bars indicate the difference in correlation coefficients between the LSTM and LR models. Table 2 provides detailed information about all

eight predictors analysed in this study [Colour figure can be viewed at wileyonlinelibrary.com]
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the LSTM model forecasts the temporal evolution of the
ONI using only the tropical SST index as the predictor.
While the LSTM model reasonably predicts the phase
variation of the observed ONI, the forecasted ONI inten-
sity appears to be too weak. The standard deviation of the
forecasted ONI is 0.12�C, representing only 13% of
the observed ONI's standard deviation (0.88�C). The high
correlation coefficient of 0.73 shown in Figure 4 for the
SST-only forecast mainly arises from the accurate predic-
tion of the ONI's phase variation rather than its ampli-
tude variation. When the tropical SSH index is included
in the prediction (SST + SSH), the LSTM model more
accurately forecasts the amplitude variation of the
observed ONI. The standard deviation of the forecasted
ONI for the combined SST + SSH is 0.40�C, which
accounts for 45% of the observed ONI's standard devia-
tion. However, the forecasted phase variation is weaker
compared to the observed phase variation. Thus, the high

correlation coefficient of 0.76 shown in Figure 4 for the
combined SST + SSH forecast primarily stems from the
accurate prediction of the ONI's amplitude variation
rather than its phase variation.

Notably, combining the tropical Pacific SST index
with the extratropical WNP predictor (Figure 5b) signifi-
cantly improves the LSTM model's forecasting capabili-
ties for both the amplitude variation and phase variation
of the ONI. The standard deviation of the forecasted ONI
reaches 0.59�C, equivalent to 67% of the observed ONI's
standard deviation. The phase variation of the forecasted
ONI also closely matches the observed phase variation.
This synergy is the key reason why the LSTM model per-
forms exceptionally well when using the SST + WNP
combination for the 18-month lead forecast, achieving a
correlation coefficient as high as 0.89 between the fore-
casted and observed ONI values (see Figure 4). In contrast,
the other two extratropical precursors (NTA and SPQ)

FIGURE 5 Monthly time series of the observed Ocean Niño Index (ONI) values (pink and blue shading) and the corresponding

18-month predicted values (line). These forecasts were generated using the long short-term memory neural network (LSTM) model by

employing various predictor combinations, including: (a) tropical sea surface temperature (SST) index, tropical SST and sea surface height

(SSH) indices. (b) tropical SST and SST over the western North Pacific (WNP) indices, tropical SST and SST over the South Pacific (SPQ)

indices, tropical SST and SST over the North Tropical Atlantic (NTA) indices [Colour figure can be viewed at wileyonlinelibrary.com]
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enable the LSTM model to forecast the overall phase varia-
tion of the observed ONI but not the observed amplitude
variation. The standard deviation of the forecasted ONI is
0.43�C when using the SST + NTA combination, whereas
it reduces to only 0.15�C when using the SST + SPQ com-
bination (see Figure 5b). This explains why the perfor-
mance of the LSTM model in the 18-month forecast is
better with the SST + NTA combination (correlation coef-
ficient R = 0.79) compared to the SST + SPQ combination
(correlation coefficient R = 0.71).

Based on our analysis results, it is evident that the
extratropical WNP predictor surpasses all other predic-
tors in enabling the LSTM model to realistically forecast
the amplitude variation of ENSO events. These findings
suggest that the ability to forecast the amplitude variation
of the ONI, rather than the phase variation, is crucial in
determining the efficacy of a predictor in long-lead fore-
casts, such as the 18-month lead time.

4 | PHYSICAL MECHANISMS
LINKING THE TROPICAL AND
EXTRATROPICAL PREDICTORS TO
OCEAN NIÑO INDEX EVOLUTION

Figure 6 presents the lead-lagged correlations between
the ONI index and the SST or SSH anomalies within the
regions where three key predictors (SSH, WNP and NTA
indices) were defined, aiming the provide insights into
the physical mechanisms linking these tropical and extra-
tropical predictors to the evolution of the ONI. In this
context, the SSH index serves as a tropical precursor, the
NTA as an extratropical precursor and the WNP as
the predictor that yields the highest performance in
18-month lead forecasts for the LSTM model.

Figure 6a showcases the correlations between the
ONI and SSH anomalies along the equatorial (5�S–5�N)
eastern-to-central Pacific. The correlations reveal that
approximately 18 months prior to the ONI peak (at lag
0), positive SSH anomalies emerge in the tropical western
Pacific and subsequently propagate eastward, triggering
El Niño in the tropical central-to-eastern Pacific. This
finding aligns with the coupling processes between SST
and SSH described by the delayed oscillator theory of
ENSO. Notably, our study uncovers that incorporating
this information into LSTM models extends the effective-
ness of the SST + SSH coupling in ENSO forecasts up to
18 months in advance.

In Figure 6b, the lead-lagged correlations between
the ONI and the SST anomalies within the western
North Pacific region (averaged between 10�S–30�N
across the Pacific) are illustrated. The correlations

demonstrate that positive SST anomalies appear in the
central Pacific (160�E–150�W) at least 18 months before
the ONI peaks. The location of the leading warming sig-
nal aligns with the region where the extratropical SST
anomalies, described in the seasonal footprint mecha-
nism, enters the tropical Pacific to trigger El Niño
events. Furthermore, the correlations indicate that the
warm SST anomalies in the central Pacific are accompa-
nied by cold SST anomalies in the northwestern Pacific
(90�–140�E), which covers most of the area where the
WNP index is defined. Previous studies have indicated
that cold SST anomalies over the western North Pacific
(negative WNP index) can stimulate an anomalous
cyclonic circulation above, leading to anomalous west-
erlies over the tropical western Pacific. This anomalous
circulation, in turn, induces anomalous westerlies over
the tropical western Pacific, exciting downwelling Kel-
vin waves propagating eastward and triggering an El
Niño event. Thus, SST anomalies associated with the
WNP index involve both extratropical and tropical trig-
gering processes of ENSO. This index possesses the pre-
diction potential associated with both the tropical and
extratropical ENSO dynamics. It is this unique property
of the WNP index that enables the LSTM model to pro-
duce better ONI forecasts compared to all other predic-
tors considered in this study.

The lead-lagged correlations between the ONI and
SST anomalies over the north tropical Atlantic region
(averaged between EQ and 15�N; Figure 6c) show that
significant cold SST anomalies appear in the tropical
North Atlantic (70�–50�W) approximately 18 months
prior to the peak of the ONI. Previous studies have
demonstrated that cold SST anomalies in the north
tropical Atlantic during February–March–April can
trigger central Pacific El Niño events during the subse-
quent winter through an extratropical teleconnection
between the NTA region and the northeastern Pacific
(Ham et al., 2013a, 2013b; Wang et al., 2017). This
interbasin interaction is evident in Figure 6c, where
warm SST anomalies emerge in the northeastern Pacific
(90�–70�W) at a lag of 8 months after the appearance of
cold anomalies in the Atlantic (70�–50�W), occurring as
early as 18 months prior (−18 months). The warm SST
anomalies in the northeastern Pacific can then propa-
gate southwestward into the tropical central Pacific,
triggering an El Niño event. The time difference
between the peak season of the NTA SST anomalies
(i.e., March–April–May) and the peak time of ENSO
(i.e., December–January–February) is approximately
18 months. This time lag explains why the NTA index
can provide prediction skill for El Niño forecasts at an
18-month lead.
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5 | CONCLUSIONS

In this paper, we examined how multiple marine and
atmospheric precursors can affect the ENSO evolution
and phase transition. We showed that the LSTM algo-
rithm of machine learning can achieve reasonable accu-
racy in long-lead (18 months) forecasts of the ONI. The
careful selection of predictors is paramount, particularly
considering the multitude of extratropical mechanisms

that have been proposed as potential precursors to ENSO.
Extratropical predictors exhibit greater capability in
extending the forecast skill of long-lead ENSO forecasting
compared to tropical predictors. Among all the predictors
considered, the WNP index demonstrates the highest pre-
diction skill in ONI forecasts, followed by the NTA index
and then the sea surface height index This superiority
can be attributed to the involvement of SST anomalies in
the WNP region in both tropical and extratropical ENSO

FIGURE 6 Lead-lagged correlations between the Ocean Niño Index (ONI) and the following variables: (a) sea surface height (SSH)

anomalies along the equatorial (5�S–5�N) eastern-to-central Pacific, (b) sea surface temperature (SST) anomalies averaged between 10�S and

30�N across the Pacific and (c) SST anomalies averaged between 0�N and 15�N over the eastern Pacific and North Tropical Atlantic (NTA)

Oceans during the period of 1982–2019. The x-axis represents longitude, and the y-axis represents the lead (+) and lag (−) times (in months)

of the predictor to the ONI. Black dots indicate significance at the 99% confidence level (Student's t test) [Colour figure can be viewed at

wileyonlinelibrary.com]
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dynamics, allowing for the utilization of predictive poten-
tial from both components of ENSO dynamics. Overall,
our findings offer insight into a group of extratropical
variability patterns that may serve as effective predictors
of the consecutive-year evolution of ENSO.

Our results should be interpreted with caution, as
there are several limitations to consider. First, we
employed multiple marine and atmospheric variables in
both the linear regression model and the machine learn-
ing model. However, utilizing a dataset based on 48 years
of observations may not adequately capture interannual
variability. To gain a better understanding of longer time-
scale variability, further experiments are required. Fur-
thermore, the evolution and progression of diverse El
Niño or La Nina phenomena have been seldom explored
and forecasted using multiple marine and atmospheric
variables. Considering that energy transportation among
different variables and Earth subsystems can potentially
explain climate changes, it is crucial to investigate these
aspects in future research. By delving into these areas, we
can enhance our understanding of climate dynamics and
improve forecasting capabilities.
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